【学习笔记】数理统计习题二

Q1: Assume that X 1 ∼ G a m m a ( α 1 , λ ) X_1\sim Gamma(\alpha_1,\lambda) X1Gamma(α1,λ), X 2 ∼ G a m m a ( α 2 , λ ) X_2\sim Gamma(\alpha_2,\lambda) X2Gamma(α2,λ), and they are independent. Prove that:

  1. Y 1 = X 1 + X 2 ∼ G a m m a ( α 1 + α 2 , λ ) Y_1=X_1+X_2\sim Gamma(\alpha_1+\alpha_2,\lambda) Y1=X1+X2Gamma(α1+α2,λ),

  2. Y 2 = X 1 / ( X 1 + X 2 ) ∼ B e t a ( α 1 , α 2 ) Y_2=X_1/(X_1+X_2)\sim Beta(\alpha_1,\alpha_2) Y2=X1/(X1+X2)Beta(α1,α2),

  3. Y 1 Y_1 Y1 and Y 2 Y_2 Y2 are independent.

Solution: 已知 X 1 X_1 X1 X 2 X_2 X2独立,故可得联合密度函数:
f ( x 1 , x 2 ) = f X 1 ( x 1 ) f X 2 ( x 2 ) = λ α 1 Γ ( α 1 ) x 1 α 1 − 1 e − λ x 1 λ α 2 Γ ( α 2 ) x 2 α 2 − 1 e − λ x 2 f(x_1,x_2)=f_{X_1}(x_1)f_{X_2}(x_2)=\frac{\lambda^{\alpha_1}}{\Gamma(\alpha_1)}x_1^{\alpha_1-1}e^{-\lambda x_1} \frac{\lambda^{\alpha_2}}{\Gamma(\alpha_2)}x_2^{\alpha_2-1}e^{-\lambda x_2} f(x1,x2)=fX1(x1)fX2(x2)=Γ(α1)λα1x1α11eλx1Γ(α2)λα2x2α21eλx2

Y 1 = X 1 + X 2 , Y 2 = X 1 X 1 + X 2 Y_1=X_1+X_2,Y_2=\frac{X_1}{X_1+X_2} Y1=X1+X2,Y2=X1+X2X1,则可推得 X 1 = Y 1 Y 2 , X 2 = Y 1 ( 1 − Y 2 ) X_1=Y_1Y_2,X_2=Y_1(1-Y_2) X1=Y1Y2,X2=Y1(1Y2),由此得
J = ∂ ( X 1 , X 2 ) ∂ ( Y 1 , Y 2 ) = ∣ Y 2 Y 1 1 − Y 2 − Y 1 ∣ = − Y 1 , ∣ J ∣ = Y 1 J=\frac{\partial(X_1,X_2)}{\partial(Y_1,Y_2)}= \left| \begin{matrix} Y_2 & Y_1 \\ 1-Y_2 & -Y_1 \end{matrix} \right| =-Y_1,|J|=Y_1 J=(Y1,Y2)(X1,X2)=Y21Y2Y1Y1=Y1,J=Y1
于是得联合密度函数
q ( y 1 , y 2 ) = f ( x 1 , x 2 ) ∣ J ∣ = λ α 1 + α 2 Γ ( α 1 ) Γ ( α 2 ) y 1 α 1 − 1 y 2 α 1 − 1 y 1 α 2 − 1 ( 1 − y 2 ) α 1 − 1 e − λ y 1 y 1 = λ α 1 + α 2 Γ ( α 1 + α 2 ) y 1 α 1 + α 2 − 1 e − λ y 1 ⋅ Γ ( α 1 + α 2 ) Γ ( α 1 ) Γ ( α 2 ) y 2 α 1 − 1 ( 1 − y 2 ) α 2 − 1 = p Y 1 ( y 1 ) p Y 2 ( y 2 ) \begin{aligned} q(y_1,y_2)&=f(x_1,x_2)|J|\\ &=\frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}y_1^{\alpha_1-1}y_2^{\alpha_1-1} y_1^{\alpha_2-1}(1-y_2)^{\alpha_1-1}e^{-\lambda y_1}y_1\\ &=\frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1+\alpha_2)}y_1^{\alpha_1+\alpha_2-1}e^{-\lambda y_1}\cdot\frac{\Gamma(\alpha_1+\alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)}y_2^{\alpha_1-1}(1-y_2)^{\alpha_2-1}\\ &=p_{Y_1}(y_1)p_{Y_2}(y_2) \end{aligned} q(y1,y2)=f(x1,x2)J=Γ(α1)Γ(α2)λα1+α2y1α11y2α11y1α21(1y2)α11eλy1y1=Γ(α1+α2)λα1+α2y1α

  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值