【学习笔记】数理统计习题二

Q1: Assume that X 1 ∼ G a m m a ( α 1 , λ ) X_1\sim Gamma(\alpha_1,\lambda) X1Gamma(α1,λ), X 2 ∼ G a m m a ( α 2 , λ ) X_2\sim Gamma(\alpha_2,\lambda) X2Gamma(α2,λ), and they are independent. Prove that:

  1. Y 1 = X 1 + X 2 ∼ G a m m a ( α 1 + α 2 , λ ) Y_1=X_1+X_2\sim Gamma(\alpha_1+\alpha_2,\lambda) Y1=X1+X2Gamma(α1+α2,λ),

  2. Y 2 = X 1 / ( X 1 + X 2 ) ∼ B e t a ( α 1 , α 2 ) Y_2=X_1/(X_1+X_2)\sim Beta(\alpha_1,\alpha_2) Y2=X1/(X1+X2)Beta(α1,α2),

  3. Y 1 Y_1 Y1 and Y 2 Y_2 Y2 are independent.

Solution: 已知 X 1 X_1 X1 X 2 X_2 X2独立,故可得联合密度函数:
f ( x 1 , x 2 ) = f X 1 ( x 1 ) f X 2 ( x 2 ) = λ α 1 Γ ( α 1 ) x 1 α 1 − 1 e − λ x 1 λ α 2 Γ ( α 2 ) x 2 α 2 − 1 e − λ x 2 f(x_1,x_2)=f_{X_1}(x_1)f_{X_2}(x_2)=\frac{\lambda^{\alpha_1}}{\Gamma(\alpha_1)}x_1^{\alpha_1-1}e^{-\lambda x_1} \frac{\lambda^{\alpha_2}}{\Gamma(\alpha_2)}x_2^{\alpha_2-1}e^{-\lambda x_2} f(x1,x2)=fX1(x1)fX2(x2)=Γ(α1)λα1x1α11eλx1Γ(α2)λα2x2α21eλx2

Y 1 = X 1 + X 2 , Y 2 = X 1 X 1 + X 2 Y_1=X_1+X_2,Y_2=\frac{X_1}{X_1+X_2} Y1=X1+X2,Y2=X1+X2X1,则可推得 X 1 = Y 1 Y 2 , X 2 = Y 1 ( 1 − Y 2 ) X_1=Y_1Y_2,X_2=Y_1(1-Y_2) X1=Y1Y2,X2=Y1(1Y2),由此得
J = ∂ ( X 1 , X 2 ) ∂ ( Y 1 , Y 2 ) = ∣ Y 2 Y 1 1 − Y 2 − Y 1 ∣ = − Y 1 , ∣ J ∣ = Y 1 J=\frac{\partial(X_1,X_2)}{\partial(Y_1,Y_2)}= \left| \begin{matrix} Y_2 & Y_1 \\ 1-Y_2 & -Y_1 \end{matrix} \right| =-Y_1,|J|=Y_1 J=(Y1,Y2)(X1,X2)=Y21Y2Y1Y1=Y1,J=Y1
于是得联合密度函数
q ( y 1 , y 2 ) = f ( x 1 , x 2 ) ∣ J ∣ = λ α 1 + α 2 Γ ( α 1 ) Γ ( α 2 ) y 1 α 1 − 1 y 2 α 1 − 1 y 1 α 2 − 1 ( 1 − y 2 ) α 1 − 1 e − λ y 1 y 1 = λ α 1 + α 2 Γ ( α 1 + α 2 ) y 1 α 1 + α 2 − 1 e − λ y 1 ⋅ Γ ( α 1 + α 2 ) Γ ( α 1 ) Γ ( α 2 ) y 2 α 1 − 1 ( 1 − y 2 ) α 2 − 1 = p Y 1 ( y 1 ) p Y 2 ( y 2 ) \begin{aligned} q(y_1,y_2)&=f(x_1,x_2)|J|\\ &=\frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}y_1^{\alpha_1-1}y_2^{\alpha_1-1} y_1^{\alpha_2-1}(1-y_2)^{\alpha_1-1}e^{-\lambda y_1}y_1\\ &=\frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1+\alpha_2)}y_1^{\alpha_1+\alpha_2-1}e^{-\lambda y_1}\cdot\frac{\Gamma(\alpha_1+\alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)}y_2^{\alpha_1-1}(1-y_2)^{\alpha_2-1}\\ &=p_{Y_1}(y_1)p_{Y_2}(y_2) \end{aligned} q(y1,y2)=f(x1,x2)J=Γ(α1)Γ(α2)λα1+α2y1α11y2α11y1α21(1y2)α11eλy1y1=Γ(α1+α2)λα1+α2y1α

  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
对于计算机专业的学生而言,参加各类比赛能够带来多方面的益处,具体包括但不限于以下几点: 技能提升: 参与比赛促使学生深入学习和掌握计算机领域的专业知识与技能,如编程语言、算法设计、软件工程、网络安全等。 比赛通常涉及实际问题的解决,有助于将理论知识应用于实践中,增强问题解决能力。 实践经验: 大多数比赛都要求参赛者设计并实现解决方案,这提供了宝贵的动手操作机会,有助于积累项目经验。 实践经验对于计算机专业的学生尤为重要,因为雇主往往更青睐有实际项目背景的候选人。 团队合作: 许多比赛鼓励团队协作,这有助于培养学生的团队精神、沟通技巧和领导能力。 团队合作还能促进学生之间的知识共享和思维碰撞,有助于形成更全面的解决方案。 职业发展: 获奖经历可以显著增强简历的吸引力,为求职或继续深造提供有力支持。 某些比赛可能直接与企业合作,提供实习、工作机会或奖学金,为学生的职业生涯打开更多门路。 网络拓展: 比赛是结识同行业人才的好机会,可以帮助学生建立行业联系,这对于未来的职业发展非常重要。 奖金与荣誉: 许多比赛提供奖金或奖品,这不仅能给予学生经济上的奖励,还能增强其成就感和自信心。 荣誉证书或奖状可以证明学生的成就,对个人品牌建设有积极作用。 创新与研究: 参加比赛可以激发学生的创新思维,推动科研项目的开展,有时甚至能促成学术论文的发表。 个人成长: 在准备和参加比赛的过程中,学生将面临压力与挑战,这有助于培养良好的心理素质和抗压能力。 自我挑战和克服困难的经历对个人成长有着深远的影响。 综上所述,参加计算机领域的比赛对于学生来说是一个全面发展的平台,不仅可以提升专业技能,还能增强团队协作、沟通、解决问题的能力,并为未来的职业生涯奠定坚实的基础。
概率论数理统计是一门研究随机现象的规律性和统计推断的学科。它的基础是概率论,该理论研究的是随机事件发生的可能性。数理统计则是根据观察到的样本,通过对未知参数的估计和对假设的检验来对总体进行推断。 概率论数理统计的应用非常广泛,涉及到许多不同的领域。在自然科学中,概率论数理统计被用来建立和分析模型,解释实验结果,以及进行科学研究。在社会科学和人文科学中,它帮助研究人员通过统计分析来得出结论,并提供可靠的推断和决策依据。在工程领域,概率论数理统计被用来分析和优化系统的可靠性和性能。 《概率论数理统计笔记PDF》是一种学习资料,它提供了该学科的基本概念、定理和方法。这份笔记可以帮助读者理解概率论数理统计的基本原理和应用,并提供实际案例和习题来加深对这些概念的掌握。通过阅读这份笔记,读者可以了解概率、随机变量、概率分布、统计推断等重要概念,以及它们在实际问题中的应用。 这份笔记的PDF格式使得它可以方便地在电子设备上阅读和存储。读者可以自由地选择在自己的电脑、平板电脑或手机上学习,随时随地进行学习。此外,PDF格式还允许读者进行注释和书签,方便他们标记和回顾重要内容。 总之,《概率论数理统计笔记PDF》是一份有助于理解和掌握概率论数理统计学习资料。它提供了基本的概念和方法,并通过实例和习题帮助读者巩固所学知识。同时,它的PDF格式也方便读者在电子设备上学习和存储。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值