【学习笔记】数理统计习题十一

这篇博客详细解答了一系列数理统计中的问题,涉及线性模型的最大似然估计(MLE)、参数的无偏性、随机预测变量的影响,以及不等方差情况下的最小二乘估计。通过对线性模型的分析,博主探讨了如何在不同条件下求解参数估计,并解释了估计量的性质和变化。同时,博主还讨论了如何在误差不等方差的情况下变换模型以满足标准统计假设。
摘要由CSDN通过智能技术生成

Q1: Consider the linear model

y i = β 0 + β 1 x i + ϵ i ,   ϵ i ∼ i i d N ( 0 , σ 2 ) , i = 1 , … , n . y_i=\beta_0+\beta_1x_i+\epsilon_i,\ \epsilon_i\stackrel{iid}{\sim} N(0,\sigma^2), i=1,\dots,n. yi=β0+β1xi+ϵi, ϵiiidN(0,σ2),i=1,,n.

  1. Derive the maximum likelihood estimators (MLE) for β 0 , β 1 \beta_0,\beta_1 β0,β1. Are they consistent with the least square estimators (LSE)?

  2. Derive the MLE for σ 2 \sigma^2 σ2 and look at its unbiasedness.

  3. A very slippery point is whether to treat the x i x_i xi as fixed numbers or as random variables. In the class, we treated the predictors x i x_i xi as fixed numbers for sake of convenience. Now suppose that the predictors x i x_i xi are iid random variables (independent of ϵ i \epsilon_i ϵi) with density f X ( x ; θ ) f_X(x;\theta) fX(x;θ) for some parameter θ \theta θ. Write down the likelihood function for all of our data ( x i , y i ) , i = 1 , … , n (x_i,y_i),i=1,\dots,n (xi,yi),i=1,,n. Derive the MLE for β 0 , β 1 \beta_0,\beta_1 β0,β1 and see whether the MLE changes if we work with the setting of random predictors?

解: 注意到 y i ∼ N ( β 0 + β 1 x i , σ 2 ) y_i\sim N(\beta_0+\beta_1x_i,\sigma^2) yiN(β0+β1xi,σ2)是独立的,则似然函数为 L ( β 0 , β 1 , σ 2 ) = ∏ i = 1 n 1 2 π σ e − ( y i − β 0 − β 1 x i ) 2 2 σ 2 = ( 2 π σ 2 ) − n / 2 e − Q ( β 0 , β 1 ) 2 σ 2 L(\beta_0,\beta_1,\sigma^2)=\displaystyle\prod_{i=1}^n\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(y_i-\beta_0-\beta_1x_i)^2}{2\sigma^2}}= (2\pi\sigma^2)^{-n/2}e^{-\frac{Q(\beta_0,\beta_1)}{2\sigma^2}} L(β0,β1,σ2)=i=1n2π σ1e2σ2(yiβ0β1xi)2=(2πσ2)n/2e2σ2Q(β0,β1)其中 Q ( β 0 , β 1 ) = ∑ i = 1 n ( y i − β 0 − β 1 x i ) 2 Q(\beta_0,\beta_1)=\sum_{i=1}^n(y_i-\beta_0-\beta_1x_i)^2 Q(β0,β1)=i=1n(yiβ0β1xi)2,对于给定的 σ 2 \sigma^2 σ2,为了使 L ( β 0 , β 1 , σ 2 ) L(\beta_0,\beta_1,\sigma^2) L(β0,β1,σ2)最大化,则需要使 Q ( β 0 , β 1 ) Q(\beta_0,\beta_1) Q(β0,β1)最小化,可知这与最小二乘估计量的估计方法一致,因此,最大似然估计值与最小二乘估计量一样。
也就是说
β ^ 1 = ℓ x y ℓ x x = ∑ i = 1 n ( y i − y ˉ ) ( x i − x ˉ ) ∑ i = 1 n ( x i − x ˉ ) 2 , β ^ 0 = y ˉ − β ^ 1 x ˉ \hat\beta_1=\frac{\ell_{xy}}{\ell_{xx}}=\frac{\sum_{i=1}^n(y_i-\bar{y})(x_i-\bar{x})}{\sum_{i=1}^n(x_i-\bar{x})^2},\hat\beta_0=\bar{y}-\hat\beta_1\bar{x} β^1=xxxy=i=1n(xixˉ)2i=1n(yiyˉ)(xixˉ),β^0=yˉβ^1xˉ接下来我们选择 σ 2 \sigma^2 σ2,令似然函数 L ( β ^ 0 , β ^ 1 , σ 2 ) = ( 2 π σ 2 ) − n / 2 e − Q ( β ^ 0 , β ^ 1 ) 2 σ 2 L(\hat\beta_0,\hat\beta_1,\sigma^2)=(2\pi\sigma^2)^{-n/2}e^{-\frac{Q(\hat\beta_0,\hat\beta_1)}{2\sigma^2}} L(β^0,β^1,σ2)=(2πσ2)n/2e2σ2Q(β^0,β^1)最大化,容易得到这样的 σ 2 \sigma^2 σ2 σ ^ M L E 2 = Q ( β ^ 0 , β ^ 1 ) n = S e 2 n \hat\sigma_{MLE}^2=\frac{Q(\hat\beta_0,\hat\beta_1)}{n}=\frac{S_e^2}{n} σ^MLE2=nQ(β^0,β^1)=nSe2我们已经证明了 E [ S e 2 ] = ( n − 2 ) σ 2 E[S_e^2]=(n-2)\sigma^2 E[Se2]=(n2)σ2,因此 E [ σ ^ M L E 2 ] = n − 2 n σ 2 E[\hat\sigma_{MLE}^2]=\frac{n-2}{n}\sigma^2 E[σ^MLE2]=nn2σ2,所以这不是 σ 2 \sigma^2 σ2的无偏估计。
如果 x i x_i xi是密度函数为 f X ( x ; θ ) f_X(x;\theta) fX(x;θ)的随机变量,则关于 ( x i , y i ) (x_i,y_i) (xi,yi)的似然函数为 L ( β 0 , β 1 , σ 2 , θ ) = ∏ i = 1 n f X ( x i ; θ ) f ( y i ∣ x i ) = ∏ i = 1 n [ f X ( x i ; θ ) 1 2 π σ e − ( y i − β 0 − β 1 x i ) 2 2 σ 2 ] = ( 2 π σ 2 ) − n / 2 e − Q ( β 0 , β 1 ) 2 σ 2 f X ( x i ; θ ) \begin{aligned} L(\beta_0,\beta_1,\sigma^2,\theta)&=\displaystyle\prod_{i=1}^nf_X(x_i;\theta)f(y_i|x_i)\\ &=\displaystyle\prod_{i=1}^n\Big[f_X(x_i;\theta)\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(y_i-\beta_0-\beta_1x_i)^2}{2\sigma^2}}\Big]\\ &=(2\pi\sigma^2)^{-n/2}e^{-\frac{Q(\beta_0,\beta_1)}{2\sigma^2}}f_X(x_i;\theta) \end{aligned} L(β0,β1,σ2,θ)=i=1nfX(xi;θ)f(yixi)=i=1n[fX(xi;θ)2π σ1e2σ2(yiβ0β1xi)2]=(2πσ2)n/2e2σ2Q(β0,β1)fX(xi;θ)对于固定的 σ 2 , θ \sigma^2,\theta σ2,θ,为了最大化 L ( β 0 , β 1 , σ 2 , θ ) L(\beta_0,\beta_1,\sigma^2,\theta) L(β0,β1,σ2,θ),则需要使 Q ( β 0 , β 1 ) Q(\beta_0,\beta_1) Q(β0,β1)最小化,因此最大似然估计值没有发生变化。

Q2: Consider the linear model without intercept

y i = β x i + ϵ i ,   i = 1 , … , n , y_i = \beta x_i+\epsilon_i,\ i=1,\dots,n, yi=βxi+ϵi, i=1,,n,

where ϵ i \epsilon_i ϵi are independent with E [ ϵ i ] = 0 E[\epsilon_i]=0 E[ϵi]=0 and V a r [ ϵ i ] = σ 2 Var[\epsilon_i]=\sigma^2 Var[ϵi]=σ2.

  • Write down the least square estimator β ^ \hat \beta β^ for β \beta β, and derive an unbiased estiamtor for σ 2 \sigma^2 σ2.

  • For fixed x 0 x_0 x0, let y ^ 0 = β ^ x 0 \hat{y}_0=\hat\beta x_0 y^0=β^x0. Work out V a r [ y ^ 0 ] Var[\hat{y}_0] Var[y^0].

解: Q ( β ) = ∑ i = 1 n ( y i − β x i ) 2 Q(\beta)=\sum_{i=1}^n(y_i-\beta x_i)^2 Q(β)=i=1n(yiβxi)2,不难发现,最小值点 β ^ \hat{\beta} β^满足
∂ Q ∂ β = − 2 ∑ i = 1 n ( y i − β x i ) x i = 0 \frac{\partial Q}{\partial\beta}=-2\displaystyle\sum_{i=1}^n(y_i-\beta x_i)x_i=0 βQ=2i=1n(yiβxi)xi=0 于是得到最小二乘估计量:
β ^ = ∑ i = 1 n x i y i ∑ i = 1 n x i 2 \hat{\beta}=\frac{\sum_{i=1}^nx_iy_i}{\sum_{i=1}^nx_i^2} β^=i=1nxi2i=1nxiyi注意到 E [ Q ( β ^ ) ] = E [ ∑ i = 1 n y i 2 + β ^ 2 ∑ i = 1 n x i 2 − 2 β ^ ∑ i = 1 n x i y i ] = ∑ i = 1 n { V a r [ y i ] + ( E [ y i ] ) 2 } − E [ β ^ ∑ i = 1 n x i y i ] = ∑ i = 1 n ( σ 2 + β 2 x i 2

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值