【学习笔记】数理统计习题七

Q1: Let X 1 , … , X n X_1,\dots,X_n X1,,Xn be i.i.d. sample of X ∼ N ( μ 1 , σ 2 ) X\sim N(\mu_1,\sigma^2) XN(μ1,σ2), and Y 1 , … , Y m Y_1,\dots,Y_m Y1,,Ym be i.i.d. sample of Y ∼ N ( μ 2 , σ 2 ) Y\sim N(\mu_2,\sigma^2) YN(μ2,σ2), where X i X_i Xis and Y j Y_j Yjs are independent, μ 1 , μ 2 ∈ R \mu_1,\mu_2\in\mathbb{R} μ1,μ2R and σ > 0 \sigma>0 σ>0 are unknown parameters. Denote S X 2 = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 S_X^2 = \frac 1n\sum_{i=1}^n(X_i-\bar X)^2 SX2=n1i=1n(XiXˉ)2 and S Y 2 = 1 m ∑ i = 1 m ( Y i − Y ˉ ) 2 S_Y^2 = \frac 1m\sum_{i=1}^m(Y_i-\bar Y)^2 SY2=m1i=1m(YiYˉ)2. Let S w = ( n S X 2 + m S Y 2 ) / ( n + m − 2 ) S_w = \sqrt{(nS_X^2+mS_Y^2)/(n+m-2)} Sw=(nSX2+mSY2)/(n+m2)

(a) Prove that S w 2 S_w^2 Sw2 is an unbiased estimator for σ 2 \sigma^2 σ2

解: 注意到 E [ n S X 2 ] = ( n − 1 ) σ 2 E[nS_X^2]=(n-1)\sigma^2 E[nSX2]=(n1)σ2 E [ m S Y 2 ] = ( m − 1 ) σ 2 E[mS_Y^2]=(m-1)\sigma^2 E[mSY2]=(m1)σ2因此 E [ S ω 2 ] = [ ( n − 1 ) σ 2 + ( m − 1 ) σ 2 ] / ( n + m − 2 ) = σ 2 E[S_\omega^2]=[(n-1)\sigma^2+(m-1)\sigma^2]/(n+m-2)=\sigma^2 E[Sω2]=[(n1)σ2+(m1)σ2]/(n+m2)=σ2从而 S w 2 S_w^2 Sw2 σ 2 \sigma^2 σ2的无偏估计

(b) Prove that

T a , b : = a ( X ˉ − μ 1 ) − b ( Y ˉ − μ 2 ) S w a 2 n + b 2 m ∼ t ( n + m − 2 ) , T_{a,b}:=\frac{a(\bar X-\mu_1)-b(\bar Y-\mu_2)}{S_w\sqrt{\frac{a^2}{n}+\frac{b^2}{m}}}\sim t(n+m-2), Ta,b:=Swna2+m

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值