【学习笔记】数理统计习题六

这篇博客详细解答了数理统计的多项选择题,涉及泊松分布、正态分布的估计,以及最大似然估计和矩估计的效率比较。还探讨了样本均值作为无偏估计量达到Cramer-Rao下界的情况。
摘要由CSDN通过智能技术生成

Q1: Let X 1 , … , X n X_1,\dots,X_n X1,,Xn be an iid sample of Poisson distribution with parameter λ \lambda λ. Which of the following are unbiased estimates of λ \lambda λ? ( A B C ABC ABC ) 多选

A. X ˉ \bar X Xˉ

B. S n ∗ 2 S_n^{*2} Sn2

C. ( X ˉ + S n ∗ 2 ) / 2 (\bar X+S_n^{*2})/2 (Xˉ+Sn2)/2

D. S n 2 S_n^2 Sn2

Q2: Let X 1 , … , X n X_1,\dots,X_n X1,,Xn be an iid sample of N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2), where μ , σ \mu,\sigma μ,σ are unknown parameters. Let T k = k ∑ i = 1 n ( X i − X ˉ ) 2 T_k=k\sum_{i=1}^n(X_i-\bar X)^2 Tk=ki=1n(XiXˉ)2 be an estimator of σ 2 \sigma^2 σ2. Particularly, when k = 1 / n k=1/n k=1/n, T k = S n 2 T_k=S_n^2 Tk=Sn2, and when k = 1 / ( n − 1 ) k=1/(n-1) k=1/(n1), T k = S n ∗ 2 T_k=S_n^{*2} Tk=Sn2. Find a value of k k k such that T k T_k Tk is the most efficient one by taking account of MSE.

解: 因为 T k / ( k σ 2 ) ∼ χ 2 ( n − 1 ) T_k/(k\sigma^2)\sim\chi^2(n-1) Tk/(kσ2)χ2(n1),我们有 E [ T k ] = k ( n − 1 ) σ 2 , V a r [ T k ] = 2 k 2 ( n − 1 ) σ 4 E[T_k]=k(n-1)\sigma^2,Var[T_k]=2k^2(n-1)\sigma^4 E[Tk]=k(n1)σ2,Var[Tk]=2k2(n1)σ4于是 M S E ( T k ) = ( E [ T k ] − σ 2 ) 2 + V a r [ T k ] = [ ( n 2 − 1 ) k 2 − 2 ( n − 1 ) k + 1 ] σ 4 MSE(T_k)=(E[T_k]-\sigma^2)^2+Var[T_k]=[(n^2-1)k^2-2(n-1)k+1]\sigma^4 MSE(Tk)=(E[Tk]σ2)2+Var[Tk]=[(n21)k22(n1)k+1]σ4容易得到当 k = 1 / ( n + 1 ) k=1/(n+1) k=1/(n+1) M S E ( T k ) MSE(T_k) MSE(Tk)最小,估计量最有效

Q3: Let X 1 , … , X n X_1,\dots,X_n X1,,Xn be a simple random sample taken from the density

f ( x ; θ ) = 2 x θ 2 , 0 ≤ x ≤ θ . f(x;\theta)=\frac{2x}{\theta^2},\quad 0\le x\le \theta. f(x;θ)=θ22x,0xθ.

  1. Find an expression for θ ^ L \hat\theta_L θ^L, the maximum likelihood estimator (MLE) for θ \theta θ.

    解: 似然函数为 L ( θ ) = ∏ i = 1 n 2 x i θ 2 = 2 n θ 2 n ( ∏ i = 1 n x i ) 1 { x ( n ) ≤ θ } L(\theta)=\displaystyle\prod_{i=1}^n\frac{2x_i}{\theta^2}=\frac{2^n}{\theta^{2n}}(\displaystyle\prod_{i=1}^nx_i)1\{x_{(n)}\le\theta\} L(θ)=i=1nθ22xi=θ2n2n(i=1nxi)1{ x(n)θ}为了使似然函数取得最大,我们需要选择 θ ≥ x ( n ) \theta\ge x_{(n)} θx(n),使得 L ( θ ) = A θ − 2 n L(\theta)=A\theta^{-2n} L(θ)=Aθ2n,其中 A = 2 n ∏ i = 1 n x i A=2^n\prod_{i=1}^nx_i A=2ni=1nxi不依赖于 θ \theta θ,因此最大似然估计值为 θ ^ = x ( n ) \hat\theta=x_{(n)} θ^=x(n)

  2. Find an expression for θ ^ M \hat\theta_M θ^M, the method of moments estimator for θ \theta θ.

    解: μ 1 = E ( X ) = ∫ 0 θ 2 x 2 θ 2 d x = 2 3 θ \mu_1=E(X)=\displaystyle\int_0^\theta\frac{2x^2}{\theta^2}dx=\frac{2}{3}\theta μ1=E(X)=0θθ22x2dx=32θ A 1 A_1 A1代替 μ 1 \mu_1 μ1
    A 1 = 1 n ∑ i = 1 n X i = X ˉ = 2 3 θ A_1=\frac{1}{n}\displaystyle\sum_{i=1}^nX_i=\bar{X}=\frac{2}{3}\theta A1=n1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值