数仓工具—Hive实战之日活跃周活跃月活(12)

本文介绍了日活跃、周活跃、月活跃用户(日活、周活、月活)的计算方法及其优化。通过数学建模分析日活与新增用户、留存率的关系,提出通过维护用户访问日期表进行优化,进一步通过维护用户访问周表以提升性能。此外,还讨论了新老用户日活的区分和预测日活的方法。总结指出,高效的日活计算需要深入思考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

日活跃周活跃月活

日活的定义非常简单,就是今日活跃的用户数,因为定义很简答,所以逻辑很简单,因此它的计算也非常简单。虽然简单,但是它却是我们的业务上非常重要的一个计算指标

日活会受到很多因素的影响,产品迭代,运营活动,推广的变化等等都会影响到日活。当然这些因素中,有的影响较小,有的暂时无法预估。因此在预测的过程中,我们可以将一些影响不大的因素,剔除出去,从而简化得到一个可计算的状态。(这个简化到可计算的过程中,其实就叫数学建模。)

日活含义

影响日活的因素中,最本质的其实是两个,一个是每日新增用户数,一个是新增用户的留存率。

某一天的日活,我们可以看作是,当天的新增,加上前一天的新增的次日留存用户,再加上大前天的新增的二日留存用户……

以此类推,我们可以认为日活是**“当天的新增用户和此前每一天新增用户在当天的留存用户之和”**,基于此,我们可以用一个很简单的公式表达日活。

DAU(n)=A(n)+A(n-1)R(1)+A(n-2)R(2)+… …+A(1)R(n-1)

其中,DAU(n)为第n天的日活,A(n)为第n

一、课程简介随着技术的飞速发展,经过多年的数据积累,各互联网公司已保存了海量的原始数据和各种业务数据,所以数据仓库技术是各大公司目前都需要着重发展投入的技术领域。数据仓库是面向分析的集成化数据环境,为企业所有决策制定过程,提供系统数据支持的战略集合。通过对数据仓库中数据的分析,可以帮助企业改进业务流程、控制成本、提高产品质量等。二、课程内容本次精心打造的数仓项目的课程,从项目架构的搭建,到数据采集模块的设计、数仓架构的设计、实战需求实现、即席查询的实现,我们针对国内目前广泛使用的Apache原生框架和CDH版本框架进行了分别介绍,Apache原生框架介绍中涉及到的技术框架包括Flume、Kafka、Sqoop、MySql、HDFS、Hive、Tez、Spark、Presto、Druid等,CDH版本框架讲解包括CM的安装部署、Hadoop、Zookeeper、Hive、Flume、Kafka、Oozie、Impala、HUE、Kudu、Spark的安装配置,透彻了解不同版本框架的区别联系,将大数据全生态系统前沿技术一网打尽。在过程中对大数据生态体系进行了系统的讲解,对实际企业数仓项目中可能涉及到的技术点都进行了深入的讲解和探讨。同时穿插了大量数仓基础理论知识,让你在掌握实战经验的同时能够打下坚实的理论基础。三、课程目标本课程以国内电商巨头实际业务应用场景为依托,对电商数仓的常见实战指标以及难点实战指标进行了详尽讲解,具体指标包括:每日、月活跃设备明细,留存用户比例,沉默用户、回流用户、流失用户统计,最近连续3活跃用户统计,最近7天内连续3天活跃用户统计,GMV成交总额分析,转化率及漏斗分析,品牌复购率分析、订单表拉链表的设计等,让学生拥有更直观全面的实战经验。通过对本课程的学习,对数仓项目可以建立起清晰明确的概念,系统全面的掌握各项数仓项目技术,轻松应对各种数仓难题。四、课程亮点本课程结合国内多家企业实际项目经验,特别加入了项目架构模块,从集群规模的确定到框架版本选型以及服务器选型,手把手教你从零开始搭建大数据集群。并且总结大量项目实战中会遇到的问题,针对各个技术框架,均有调优实战经验,具体包括:常用Linux运维命令、Hadoop集群调优、Flume组件选型及性能优化、Kafka集群规模确认及关键参数调优。通过这部分学习,助学生迅速成长,获取前沿技术经验,从容解决实战问题。
Hadoop Hive数仓实战项目是基于Hadoop和Hive技术的数据仓库项目。在这个项目中,使用Hadoop集群来存储和处理大规模的数据,并使用Hive作为数据仓库的查询和分析工具。 在项目中,首先需要添加一个hadoop用户组,并创建一个hadoop用户,并设置用户密码。然后,切换到hadoop用户,并启动Hive。通过Hive,可以执行一系列的命令,如展示数据库、退出等操作。 引用中提到,Hive建立在Hadoop之上,具有与Hadoop相同的可扩展性,可以轻松应对大规模的数据处理需求。这意味着Hadoop Hive数仓实战项目可以处理大规模的数据,并能够支持超过1000个节点的Hadoop集群。 另外,引用中提到了一些配置文件的重要性,如hive-site.xml和hive-default.xml,它们可以通过设置-hiveconf参数来进行配置。 综上所述,Hadoop Hive数仓实战项目是一个基于Hadoop和Hive技术的大规模数据仓库项目,可以通过Hive进行数据查询和分析,并具有与Hadoop相同的可扩展性。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [大数据开发基础入门与项目实战(三)Hadoop核心及生态圈技术栈之3.数据仓库工具Hive基础](https://blog.csdn.net/CUFEECR/article/details/121189073)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不二人生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值