Spark MLlib模型训练—分类算法Linear Support Vector Machine
支持向量机 (Support Vector Machine, SVM) 是一种常用于分类和回归任务的机器学习算法。SVM 的核心思想是在特征空间中找到一个超平面,使得它能够最大化类别之间的间隔,从而实现分类。SVM 分为线性和非线性两类,本文主要探讨 Spark MLlib 中的 线性支持向量机 (Linear SVM)。
线性支持向量机的基本思想是通过一个线性超平面将数据划分为两个不同的类别。相比其他分类算法,SVM 的优势在于其对高维数据表现良好,同时具有较强的泛化能力。在 Spark 中,LinearSVC
是对线性支持向量机的实现,适合用于二分类任务。
1. 线性支持向量机的原理
在线性支持向量机中,假设输入数据可以通过线性划分。在二维空间中,分类问题的目标是找到一条直线(即超平面)将两个类别的数据点尽可能分开,使得分类的间隔最大化。对于高维数据,这条“直线”变成了超平面。
数学上,SVM 寻找的超平面满足以下条件:
- 对于正类样本,满足