说明:本专栏内容来自于个人学习笔记、以及相关项目的实践与总结。写作目的是为了让读者体会深度学习的独特魅力与无限潜力,以及在各行各业之中的应用与实践。因作者时间精力有限,难免有疏漏之处,期待与读者共同进步。

前言
在当今数据驱动的时代,深入理解和准确分析时间序列数据对于众多领域至关重要。无论是金融市场的走势预测、医疗健康领域的疾病监测、交通运输的流量管控,还是能源电力的优化调度,时间序列数据都蕴含着丰富的信息和潜在的价值。
本专栏旨在为读者提供一个全面而深入的深度学习在时序数据分析领域的实战指南。通过具体的项目案例,我们将深入探讨时序预测、分类、异常检测和概率预测等关键任务,展示深度学习技术在解决这些复杂问题上的强大能力。无论是初学者还是小白都可以轻松上手,通过实战了解时序算法的精髓。
- (Ⅰ):基于XGBoost极端梯度提升实现股票价格时序预测——TimeSeriesSplit交叉验证与GridSearchCV超参数调优详解
- (Ⅱ):基于LightGBM轻量梯度提升机实现汇率时间序列预测——蒙特卡洛交叉验证与scikit-optimize超参数调优详解
目录
- (Ⅰ):疾病传播预测:
- (Ⅱ):疾病诊断分类:通过分析心电图的时序特征来区分不同类型的心脏疾病
- Univariate Time-series Forecasting
- Multivariate Time-series Forecasting
- (※):
基于长短期记忆 LSTM 的送餐时间预测 - Univariate Time-series Forecasting
- 交通拥堵异常检验
- 交通流量概率预测
- Multivariate Time series Binary Classification
- Multivariate Time-series Forecasting
- 气温
- Univariate Time-series Forecasting
- Multivariate Time-series Forecasting
- Multivariate Time-series Forecasting
- Time Series Anomaly Detection
- 电力负荷异常检验
数据集下载链接⬅直接点击
附件源码
GitCode、GitHub
258

被折叠的 条评论
为什么被折叠?



