DeepSearch 与 DeepResearch 的设计和实现

DeepSearch 与 DeepResearch 的设计和实现

这才 2 月份,深度搜索(Deep Search)就已经隐隐成为 2025 年的新搜索标准了。像谷歌和 OpenAI 这样的巨头,纷纷亮出自己的“Deep Research”产品,努力抢占这波技术浪潮的先机。(我们也很自豪,在同一天也发布了开源的node-deepresearch)。

Perplexity 紧随其后,也推出了他们的 Deep Research。而马斯克的 X AI 则更进一步,直接把深度搜索功能整合进了他们的 Grok 3 模型里,本质上是 Deep Research 的一种变体。

坦白说,深度搜索这个概念并不算什么创新,它本质上就是我们去年常说的 RAG(检索增强生成)或者多跳问答。但在今年一月底,随着 Deepseek-r1 的发布,它获得了前所未有的关注和发展。

就在上周末,百度搜索和腾讯微信搜索都已经把 Deepseek-r1 整合到他们的搜索引擎里了。AI 工程师们意识到,通过把长期的思考和推理过程融入到搜索系统中,能够实现比以往任何时候都更精准、更深入的检索效果。

### DeepResearch deepsearch 的区别 在 IT 上下文中,“DeepResearchdeepsearch” 是两个不同的概念,尽管它们都涉及深入的数据处理分析。 #### 1. **DeepResearch** “DeepResearch” 并不是一个标准的技术术语,但在某些上下文中可能指代一种专注于深度研究的方法或过程。通常情况下,它可能是某个特定领域(如人工智能、机器学习或其他技术方向)中的项目名称或者方法论[^4]。 - 如果用于描述科学研究,则表示针对某一主题进行极其详尽的研究工作。 - 可能涉及到复杂的算法设计、实验验证以及理论推导等方面的工作。 #### 2. **deepsearch** 相比之下,“deepsearch” 更倾向于指代基于深度学习 (Deep Learning) 技术实现的一种搜索引擎优化方式或者是具体产品/服务的名字。例如: - 它可以代表利用神经网络模型来改进传统搜索机制的功能,从而提供更精准的结果匹配能力[^5]; - 还有一些公司会将自己的智能化检索平台命名为类似“DeepSearch”,以此突出其采用先进技术的特点。 两者主要差异如下表所示: | 特性 | DeepResearch | deepsearch | |-----------------|---------------------------------------|-----------------------------------------| | 含义 | 表达广义上对于某项课题做细致探究的行为 | 基于AI驱动的新一代高效数据挖掘工具 | | 应用场景 | 学术界较多见 | 商业化软件开发领域更为普遍 | 需要注意的是上述解释并非绝对固定不变,在不同语境里可能会存在其他含义。 ```python # 示例代码展示如何通过Python调用API完成一次简单的文本相似度计算任务, # 类似功能或许正是所谓的"deepsearch"所追求达到的效果之一。 import requests def get_text_similarity(text1, text2): url = "https://api.example.com/deepsearch" payload = { 'text1': text1, 'text2': text2 } response = requests.post(url, json=payload) return response.json()['similarity_score'] result = get_text_similarity('hello world', 'world hello') print(result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不二人生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值