大模型——阿里云百炼 MCP 服务评测与 Agent 构建实战
近期,MCP
(Model Calling Protocol,模型调用协议)成为技术圈内一个高频词汇。简单来说,MCP
旨在简化大型语言模型(LLM)使用外部工具或服务的过程,显著降低了开发者和用户构建复杂 AI 应用的门槛。随着相关协议的发布,近几个月内涌现了大量支持 MCP
的工具和服务。
然而,尽管 MCP
的使用逻辑(通过自然语言向 AI 提出需求)相对直观,其配置过程却常常相当复杂。目前支持 MCP
的客户端软件,如 Claude
或集成 AI 功能的 IDE Cursor
,本身就有一定的学习曲线。更关键的是,配置 MCP
服务通常需要安装特定的运行环境,并要求用户理解和使用命令行工具,这无疑给许多非专业开发者设置了障碍。此前的一些教程尝试详细解释这些步骤,但仍有用户反映难以理解和操作。
业界期待能有平台简化 MCP
的配置流程,最好能像应用商店一样实现一键部署。近日,阿里云百炼
平台响应了这一需求,推出了其宣称的业界首个提供全生命周期