大模型——基于 StarRocks 的向量检索探索

大模型——基于 StarRocks 的向量检索探索

AI 和大模型无疑是当前的热门话题,作为从事数据工作的我们,也希望能够紧跟这一趋势,探索如何与 AI 实现更紧密的结合。这正是我们最初的诉求。随着大模型的兴起,推动了公司在这一背景下对向量检索场景的深入探索,也为我们进一步拓展在 StarRocks 上的应用提供了新的机遇。

向量检索技术浅析

什么是向量检索

img

什么是向量检索呢?简单来说,向量检索是**通过给定一个查询向量,在特征数据库中找到与之距离最近的 k 个向量。**举个例子,如果我们把今天会场的所有人作为特征向量,那么向量检索的任务就是找到与我最相似的 10 个人。用通俗的语言来说,它其实就是一个 Top N 查询。虽然本质上,向量检索就是一个 Top N 查询,但由于深度学习中几乎所有内容都用向量表示,所以我们将其称为“向量检索”。

近似最近邻查询

之所以在向量检索中进行 Top N 查询显得如此复杂,主要原因在于向量本身的维度通常非常高。这导致了计算的复杂性,每次计算都需要进行

### StarRocks MPP 数据库介绍 StarRocks 是一款高性能的分布式关系型数据库,专为大规模数据分析而设计。它采用现代架构和技术栈,旨在提供快速的数据查询能力和高效的资源利用率。其核心功能之一是基于 **MPP(Massively Parallel Processing)** 的分布式执行框架,该框架允许 SQL 查询在多个节点上并行处理,显著提升性能。 --- ### 架构概述 #### 1. FE(Frontend) FE 是 StarRocks 集群中的控制模块,主要负责元数据管理、查询计划生成以及协调 BE 节点的工作。FE 提供了一个统一的接口来接收用户的请求,并将其转化为具体的执行计划发送给 BE 进行实际计算[^1]。 #### 2. BE(Backend / CN 替代方案) 传统架构中,BE 执行数据存储和计算任务;而在最新的存算分离模式下,CN(Compute Node)取代了部分 BE 功能,专注于计算层的任务分配与调度。这种改进使得计算和存储解耦,便于动态调整资源配置[^3]。 #### 3. 数据管理 无论是传统的存算一体化还是新型的存算分离模型,StarRocks 均能高效管理和访问海量数据集。特别是在存算分离场景中,支持多种外部存储介质如 AWS S3 或 HDFS 等作为底层持久化载体。 --- ### 主要特性 #### 1. MPP 分布式执行框架 借助于 MPP 技术,StarRocks 实现了跨多台服务器的同时协作运算能力。此机制充分利用硬件资源,在面对复杂 OLAP 场景时表现出卓越优势——即使涉及超大数据量也能维持较低延迟水平[^2]。 #### 2. 向量化执行引擎 为了进一步加速查询过程,StarRocks 引入了完全向量化的操作方式。相比常规方法而言,这种方法减少了不必要的内存读写次数,提高了 CPU 利用效率。 #### 3. CBO 优化器 COST-BASED OPTIMIZATION (CBO),即代价估算型查询优化算法被广泛应用于商业级 RDBMS 中。同样地,StarRocks 内置了一套成熟的 CBO 组件用来自动挑选最优路径完成特定需求下的检索动作。 #### 4. 可实时更新的列式存储引擎 不同于某些只适合批量加载作业的传统仓库解决方案,StarRocks 支持频繁的小规模插入/修改行为而不影响整体表现力。这得益于它的创新性设计思路:将最新变动记录单独保存直至满足条件后再合并至主表之中。 #### 5. 智能物化视图 通过预先创建好常用维度组合的结果快照形式存在下来形成所谓的“物化视图”,当后续遇到相似结构的新请求到达时候可以直接返回已有的答案而不是重复做一遍相同的逻辑推导流程,极大地缩短响应时间间隔。 #### 6. 数据湖分析集成 除了自身的强大功能之外,StarRocks 还具备无缝对接主流开源生态系统成员比如 Apache Hive/Hudi/Iceberg/DeltaLake 等的能力,让用户轻松构建混合云环境下的端到端业务链条。 --- ```python # 示例 Python 客户端连接代码片段 from starrocks import connect conn = connect(host='localhost', port=9030, user='root') cursor = conn.cursor() cursor.execute('SELECT * FROM example_table LIMIT 10;') for row in cursor.fetchall(): print(row) ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不二人生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值