Halcon图像处理基础篇,median_image

本文介绍了中值滤波器在图像处理中的应用,其原理与均值滤波类似但以像素为中心,通过不同形状(如圆形和正方形)、尺寸和边界处理方式(continued,cyclic,mirrored)来降低噪声。参数选择对结果有显著影响,根据实际需求调整以优化图像质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上一篇写完了mean_image均值滤波,这篇来写median_image中值滤波。

问题分析

这些噪声信号降低图像的质量、细节和对比度,从而影响图像的观感和可用性。

算子介绍:使用不同的掩模计算中值滤波器。

算子本体:median_image(Image : ImageMedian : MaskType, Radius, Margin : )
参数解释:median_image(输入图像: 输出图像: 滤波器形状, 尺寸, 边界处理方式: )
eg.median_image (ImageEmphasize, ImageMedian, ‘circle’, 1, ‘mirrored’)

中值滤波的原理和均值滤波其实差不多,不同的是,中值滤波以像素为中心,取一个指定形状的领域作为滤波器,可以使正方向也可以是圆形,然后将该区域内的像素灰度值进行排序,排序结果的中间值作为灰度计算结果复制给该区域内的像素

相比于均值滤波,参数多了些,参数的设定也稍微有点弯弯绕。

各参数不同的效果

MaskType

滤波器的形状,有’circle’圆和’square’正方形

Radius

滤波器的尺寸,当这个参数为3时,如果选择的形状为circle,表示圆的半径为3,即滤波器为一个半径为3,直径为6的圆形滤波器;
如果选择的形状为square,表示正方向的边长为3+1+3=7,即为7*7的正方形滤波器

Margin

边界处理方式,分别有三种,是三种不同的边界处理方式,因为图像边界往往无法移动滤波窗口,因此需要对像素进行一些补充。
画个简单的示意图(只是示意图,不是算子具体的过程),只有红框中间的像素会被处理到,图像边缘的像素没办法处理到。
在这里插入图片描述

‘continued’(持续):在这种处理方式下,图像边界上的灰度值将一直延续到图像边界之外的像素上。简单来说,边界上的像素值将沿着同样的数值持续延伸到边界之外。

‘cyclic’(循环):这种处理方式使用了循环逻辑,当像素越过图像边界时,它会从图像的对应边界处重新出现,就好像图像在水平和垂直方向上重复出现一样。这意味着图像边界之外的像素值依赖于边界内的像素值。

‘mirrored’(镜像):这种处理方式在图像边界处进行像素的镜像反射。当像素超出边界时,它会以反向的顺序在边界内进行反映。换句话说,图像边界外的像素值将通过镜像方式复制边界内的像素值。

‘continued’ 会持续使用边界上的像素值,‘cyclic’ 使用循环方式回到边界内重新使用像素值,而 ‘mirrored’ 则通过镜像反射来计算边界外的像素值。具体选择哪种方式取决于具体的应用需求和个人偏好。

参考资源链接:[Halcon实现图像高斯模糊操作实战](https://wenku.csdn.net/doc/ddh7372ija?utm_source=wenku_answer2doc_content) 在Halcon中,高斯模糊是图像处理中常用的技术,用于平滑图像并减少噪声。convol_image和gauss_image是两种不同的实现方式。'convol_image'函数通过卷积操作应用高斯滤波,可以使用自定义的卷积核,而'gauss_image'则直接应用内置的高斯核。 具体来说,'convol_image'函数接受一个图像和一个卷积核作为参数,卷积核的大小和权重可以根据需要自定义。通过调整卷积核,convol_image函数可以实现不同强度的模糊效果。例如,可以使用一个3x3的核,权重可以根据高斯分布进行设置。'gauss_image'函数则通过指定高斯核的标准差来控制模糊程度,标准差越大,模糊效果越强。 在实际应用中,convol_image适合于需要更多自定义处理的场景,而gauss_image则更简单直接。例如,使用convol_image可以更灵活地处理图像边缘,保持边缘信息的连续性,而gauss_image则可能对图像边缘产生更多的模糊。 根据提供的《Halcon实现图像高斯模糊操作实战》资料,我们可以了解到如何使用这两种方法来处理图像。例如,convol_image可以设置为镜像边界处理来维持边缘的连续性,而gauss_image则通过改变标准差来改变模糊效果。这些操作对于图像质量的提升和后续处理(如边缘检测)都是非常关键的。 在代码实现方面,可以首先使用convol_image函数进行初步的模糊处理,然后使用gauss_image函数对结果进行微调,以达到所需的图像处理效果。通过对比两种方法处理后的图像,可以清晰地看到它们在实际应用中的差异和适用场景。 参考资源链接:[Halcon实现图像高斯模糊操作实战](https://wenku.csdn.net/doc/ddh7372ija?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值