pytorch中如何进行全局平均池化 Global Average Pooling

本文介绍如何使用Pytorch实现全局平均池化操作。通过nn.AdaptiveAvgPool2d(1)可以方便地创建一个全局平均池化层。适用于不同输入尺寸的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

If you want a global average pooling layer, you can use nn.AdaptiveAvgPool2d(1). In Keras you can just use GlobalAveragePooling2D.

Pytorch官方文档:

torch.nn.AdaptiveAvgPool2d(output_size)[SOURCE]

Applies a 2D adaptive average pooling over an input signal composed of several input planes.

The output is of size H x W, for any input size. The number of output features is equal to the number of input planes.

Parameters:output_size – the target output size of the image of the form H x W. Can be a tuple (H, W) or a single H for a square image H x H H and W can be either a int, or None which means the size will be the same as that of the input.

 

Examples

>>> # target output size of 5x7
>>> m = nn.AdaptiveAvgPool2d((5,7))
>>> input = torch.randn(1, 64, 8, 9)
>>> output = m(input)
>>> # target output size of 7x7 (square)
>>> m = nn.AdaptiveAvgPool2d(7)
>>> input = torch.randn(1, 64, 10, 9)
>>> output = m(input)
>>> # target output size of 10x7
>>> m = nn.AdaptiveMaxPool2d((None, 7))
>>> input = torch.randn(1, 64, 10, 9)
>>> output = m(input)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值