推理规则/经典规则(排中律/反证法双重否定消除)

本文探讨了经典逻辑中的推理规则,包括排中律、反证法(pbc)和双重否定消除(¬¬E)。通过详细展示了如何从一个规则导出其他规则,以及这些规则在证明过程中的应用,它强调了自然演绎在证明定理中的作用,并提到了自动证明搜索中的重要性。同时,文章讨论了经典逻辑与建设性逻辑的区别,以及特定连接词在经典逻辑中的独特性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

推理规则/经典规则

推理规则允许我们构建证明
排除规则自上而下分解判断,它们通常用于证明的开始,引入规则自下而上分解判断,它们通常用于证明结束
我们现在可以在后续证明中使用 α → β, β → γ ⊢ α → γ 作为引理或作为派生推理规则
从技术上讲,定理是 ⊢ α 形式的序列,左边没有假设的十字转门符号。 演绎定理说我们总能想到Prop中的sequents作为描述定理。
等价陈述和双条件
如果 α ⊢ β 和 β ⊢ α 都成立,我们写α ⊣⊢ β并说α,β是等价的。
这和说的一样⊢ α → β 和 ⊢ β → α都是定理。
我们还有α ⊣⊢ β 当且仅当 ⊢ α ↔ β我们通过以下方式定义双条件箭头 (↔)
α ↔ β = (α → β) ∧ (β → α)
证明很少从头开始。 在实践中,我们使用派生规则作为快捷方式和/或信息隐藏。
id : α → α
g : α → β f : β → γ/(f ◦ g) : α → γ
经典规则
许多计算机科学家喜欢建设性命题逻辑
许多数学家更喜欢经典逻辑,这需要额外的推理规则
它打破了引入/排除规则之间的和谐
在这里插入图片描述

(lem):排中律;排中律是说这个命题是真和这个命题是假必居其一,也就是“A是B或者不是B”.比如说“这个矛是最锋利的,可刺穿任何盾,这个盾最坚固,任何矛都刺不破”就不符合排中律.
(pbc):反证法;
(¬¬E):双重否定消除

其中任何一个就足够了——其他的都是可导出的。 他们都没有计算内容

经典规则对建构主义者来说是有问题的。
例如,⊢ α ∨ ¬α说每个命题要么是对的要么是错的——没有“中间”选项。
为了证明它,您应该提供 α 的证明或 ¬α 的证明

经典命题逻辑的连接词不再是独立的。
例如,我们可以证明
α ∨ β ⊣⊢ ¬(¬α ∧ ¬β) α → β ⊣⊢ ¬α ∨ β
可以从小子集开始并明确定义其余部分{¬, ∧} {⊥, →} {¬, ∧, ∨}并且定义的连接词的推理规则变得可推导。
稍后我们会看到集合 {¬, ∧, ∨} 对于自动证明搜索很重要

讲义包含一长串经典定理
使用自然演绎证明它们是一种很好的做法
稍后我们还将看到如何使用交互式证明助手来证明其中一些

问题 证明将建设性命题逻辑扩展到经典命题逻辑
通过添加 (lem) 或 (pbc) 或 (¬¬E)——在感觉在所有三个扩展中都可以推导出相同的公式。

回答:
第 1 步:首先,我们从 (pbc) 导出 (¬¬E) 和 (lem)。

1. ¬¬α 		hyp
2. ¬α 		hyp
3. ⊥ 		¬E, 1,2
4. α 		pbc, 2-3

1. ¬(α ∨ ¬α) 	hyp
2. α 			hyp
3. α ∨ ¬α 		∨I 1,2
4. ⊥ 			¬E,1,3
5. ¬α 			¬I, 2-4
6. ¬α 			hyp
7. α ∨ ¬α 		∨Ir,6
8. ⊥ 			¬E,1,7
9. ¬¬α 			¬I, 6-8
10. ⊥ 			¬E, 5,9
11. α ∨ ¬α 		pbc, 1-10

第 2 步:现在我们从 (¬¬E) 导出 (pbc)。 然后我们可以从(pbc) 导出 (lem) - 因此从 (¬¬E) — 与步骤 1 相同。
记住 (pbc) 所说的:如果我们可以从 ¬α 推导出 ⊥,那么我们可以得出 α。
因此,我们确实可以找到一些证明 ⊥ 来自 ¬α。 将此引理称为“(*)”。
我们必须证明 α 如下:

1. ¬α 		hyp
2. ⊥ 		(), 1
3. ¬¬α 		¬I, 1-2
4. α 		¬¬E, 3

第 3 步:最后从 (lem) 导出 (pbc),再次使用 (∗)。 和以前一样,然后可以导出 (¬¬E) 如第 1 步。

1. α ∨ ¬α 		lem
2. α 			hyp
3. ¬α 			hyp
4. ⊥ 			()
5. α 			⊥E, 5
6. α 			∨E, 2,3,4-6

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值