深度学习系列54:LABEL-STUDIO进行半自动化目标检测标注

参考https://mmdetection.readthedocs.io/zh-cn/latest/user_guides/label_studio.html,这里进行简要概述:

1. 启动目标检测服务

在mmdetection文件夹中,执行

label-studio-ml start projects/LabelStudio/backend_template --with \
config_file=configs/rtmdet/rtmdet_m_8xb32-300e_coco.py \
checkpoint_file=...pth \
device=cpu \
--port 8003

2. 启动labelstudio

另开一个terminal,执行

label-studio start

打开浏览器访问 http://localhost:8080/ ,建立一个新项目。此时不要着急save,需要先点击后面的Labeling Setup连接第一步的目标检测服务

3. 连接服务

按照如图顺序点击
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
看到如下 Connected 就说明后端推理服务添加成功。
在这里插入图片描述

### 如何在 Label Studio 中进行关系抽取标注 #### 设置项目 为了实现关系抽取的任务,在创建一个新的项目时,可以通过 **Settings** 配置项目的具体参数。进入 `projects / 测试项目 / Settings` 页面后,可以在 **General** 部分定义项目的名称和描述[^2]。 #### 定义标注界面 在 **Labeling Interface** 下,通过浏览模板 (`Browse Templates`) 来选择适合的关系抽取任务的模板。如果默认模板不满足需求,则可以自定义配置 XML 文件来设计标注界面。例如: ```xml <View> <Relations name="relation" toName="text"> <RelationLabels> <Label value="Person-X works at Organization-Y"/> <Label value="Organization-X is located in Location-Y"/> </RelationLabels> </Relations> <Text name="text" value="$text"/> </View> ``` 上述代码片段展示了如何定义两个实体之间的关系标签。这里 `<RelationLabels>` 节点用于指定可能存在的关系类型,而 `<Text>` 则表示输入文本字段[^1]。 #### 添加标签 在完成模板的选择或定制之后,转到 **Add label names** 步骤以增加具体的标签名。对于关系抽取来说,这些标签通常代表不同类型的语义关联,比如“工作于”或者“位于”。接着可在 **Labels** 界面调整各标签的颜色样式以便区分,并支持移除不需要的标签项。 #### 导入数据 准备好标注环境以后,利用 Import 功能上传待处理的数据集文件至当前项目下。这一步允许用户一次性加载多个文档供后续操作使用。 #### 开始标注 当一切准备就绪后,即可正式开启手动或半自动化标注流程。借助预先训练好的机器学习模型(如果有),能够加速整个过程并提高效率。关于这部分内容可参考官方文档有关 Machine Learning Backend 的集成指南。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值