倒排索引是文档检索系统中最常见的数据结构,被广泛用于全文索引引擎。它主要是用来存储某个单词(或词组)在一个文档或一组文档那该的存储位置的映射,即提供了一种根据内容来查找文档的方式。由于不是根据文档来确定文档所包含的内容,而是进行了相反的操作(即根据关键字来查找文档),故称为倒排索引。
源码
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class InversedIndex {
/**
* 将输入文件拆分,
* 将关键字和关键字所在的文件名作为map的key输出,
* 该组合的频率作为value输出
* */
public static class InversedIndexMapper extends Mapper<Object, Text, Text, Text> {
private Text outKey = new Text();
private Text outVal = new Text();
@Override
public void map (Object key,Text value,Context context) {
StringTokenizer tokens = new StringTokenizer(value.toString());
FileSplit split = (FileSplit) context.getInputSplit();
while(tokens.hasMoreTokens()) {
String token = tokens.nextToken();
try {
outKey.set(token + ":" + split.getPath());
outVal.set("1");
context.write(outKey, outVal);
} catch (IOException e) {
e.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
/**
* map的输出进入到combiner阶段,此时来自同一个文件的相同关键字进行一次reduce处理,
* 将输入的key拆分成关键字和文件名,然后关键字作为输出key,
* 将文件名与词频拼接,作为输出value,
* 这样就形成了一个关键字,在某一文件中出现的频率的 key--value 对
* */
public static class InversedIndexCombiner extends Reducer<Text, Text, Text, Text> {
private Text outKey = new Text();
private Text outVal = new Text();
@Override
public void reduce(Text key,Iterable<Text> values,Context context) {
String[] keys = key.toString().split(":");
int sum = 0;
for(Text val : values) {
sum += Integer.parseInt(val.toString());
}
try {
outKey.set(keys[0]);
int index = keys[keys.length-1].lastIndexOf('/');
outVal.set(keys[keys.length-1].substring(index+1) + ":" + sum);
context.write(outKey, outVal);
} catch (IOException e) {
e.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
/**
* 将combiner后的key value对进行reduce,
* 由于combiner之后,一个关键字可能对应了多个value,故需要将这些value进行合并输出
* */
public static class InversedIndexReducer extends Reducer<Text, Text, Text, Text> {
@Override
public void reduce (Text key,Iterable<Text> values,Context context) {
StringBuffer sb = new StringBuffer();
for(Text text : values) {
sb.append(text.toString() + " ,");
}
try {
context.write(key, new Text(sb.toString()));
} catch (IOException e) {
e.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
Configuration conf = new Configuration();
Job job = new Job(conf,"index inversed");
job.setJarByClass(InversedIndex.class);
job.setMapperClass(InversedIndexMapper.class);
job.setCombinerClass(InversedIndexCombiner.class);
job.setReducerClass(InversedIndexReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setNumReduceTasks(3);
FileInputFormat.addInputPath(job, new Path("input"));
FileOutputFormat.setOutputPath(job, new Path("output"));
System.exit(job.waitForCompletion(true)?0:1);
}
}
Example
原文本文件
text1.txt
MapReduce is sample
text2.txt
MapReduce is powerful is sample
text3.txt
Hello MapReduce hello world
运行结果文件
Hello text3.txt:1
MapReduce text3.txt:1 text1.txt:1 , text2.txt:1
hello text2.txt:2 , text1.txt:1
powerful text2.txt:1 ,text1.txt:1
world text3.txt:1
过程分析
Map过程:
将输入文件关键字和关键字所在的文件名组合作为map的key输出,map的value为1
如 MapReduce这个关键字map后结果为:
< MapReduce:text1.tx1 ,1>
< MapReduce:text2.txt ,1>
< MapReduce:text3.txt ,1>
Combiner过程:
对Map过程中产生的key相同的做Reduce处理
如< hello:text3.txt , 1> < hello:text3.txt ,1 >合并成< hello ,text3.txt:2>
Reduce过程:
对于combiner过程中产生的具有相同的key的value进行合并输出,最终结果为运行结果文件