时序预测 | MATLAB实现ARIMA-BP组合模型时间序列预测

文章介绍了如何在MATLAB中实现ARIMA-BP组合模型进行时间序列预测,包括数据预处理、ARIMA模型和BP神经网络模型的构建,以及组合模型的构建和评估。预测效果通过均方误差和平均绝对误差等指标衡量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时序预测 | MATLAB实现ARIMA-BP组合模型时间序列预测

预测效果

1
2
3
4

基本介绍

时序预测 | MATLAB实现ARIMA-BP组合模型时间序列预测。

模型原理

ARIMA-BP组合模型是一种常用的时间序列预测方法,它将ARIMA模型和BP神经网络模型结合起来,利用它们各自的优势来提高预测精度。下面是一个基本的ARIMA-BP组合模型的实现步骤:

  1. 数据预处理:与单独使用ARIMA或BP模型预测的步骤相同,需要进行数据清洗、缺失值处理、特征工程等预处理步骤。同时,需要将数据分为训练集和测试集。

  2. ARIMA模型的构建:使用ARIMA模型对训练集数据进行拟合,得到ARIMA模型的参数。可以使用MATLAB中的函数来实现ARIMA模型的构建和拟合。

  3. BP神经网络模型的构建:使用BP神经网络模型对训练集数据进行拟合,得到BP神经网络模型的参数。可以使用MATLAB中的函数来实现BP神经网络模型的构建和拟合。

  4. 组合模型的构建:将ARIMA模型和BP神经网络模型进行组合,得到组合模型。可以将ARIMA模型的预测结果作为BP神经网络模型的输入,或将BP神经网络模型的输出作为ARIMA模型的输入。具体的组合方式需要根据实际情况进行调整。

  5. 模型评估:使用测试集数据对组合模型进行评估,计算预测精度指标如均方误差、平均绝对误差等。

  6. 结果输出:使用MATLAB中的“plot”函数来绘制组合模型的预测结果,同时可以使用MATLAB中的“subplot”函数来显示多个指标的预测结果。

需要注意的是,ARIMA-BP组合模型的构建需要同时具备ARIMA模型和BP神经网络模型的相关知识。

程序设计

  • 完整程序和数据获取方式:私信博主。
%预测
S=5;                      %S是预测步数
ff=[Y;zeros(S,1)];
p=iddata(ff);
P=predict(m,p,S);         %通过模型进行预测
G=get(P);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
PD=G.OutputData{1,1}(length(Y)+1:length(Y)+S,1);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
D=[Y;PD];
X_D=cumsum([y(1);D]);
PF=X_D(length(y)+1:end);   %预测值
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
figure(3);
x1=x';
plot(x,data,'-*');
hold on
plot(x(96:100),PF,'-r*');
set(gca,'LineWidth',1.2)
box off
ax2 = axes('Position',get(gca,'Position'),...
    'Color','none',...
    'XAxisLocation','top',...
    'YAxisLocation','right',...
    'XColor','k','YColor','k');
set(ax2,'YTick', []);
set(ax2,'XTick', []);
box on
set(gca,'LineWidth',1.2)
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/124639097

参考资料

[1] https://blog.csdn.net/kjm13182345320/category_11799242.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/kjm13182345320/article/details/124571691

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值