时序预测 | MATLAB实现时间序列ACF和PACF分析

本文介绍了时序预测中使用MATLAB进行时间序列分析,特别是自相关函数(ACF)和部分自相关函数(PACF)的应用。ACF描述了序列当前值与过去值的自相关程度,而PACF则关注残差与后续滞后值的关系,用于建模时避免多重共线性问题。文章还包含了作者在CSDN平台的成就分享。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时序预测 | MATLAB实现时间序列ACF和PACF分析

在这里插入图片描述
在这里插入图片描述

基本介绍

自回归分析是线性回归分析的一种推广,主要是研究一个序列反映的自我因果关系。普通线性回归基于互相关分析,涉及两个以上的变量,一个作为因变量(响应变量代表“果”),其余作为自变量(解释变量代表“因”)。自回归则基于自相关分析,涉及唯一的变量,主要是用过去解释未来(对于时间序列),用上游解释下游(对于空间序列)。求解自回归模型的算法有多种,包括精确最大似然法、Cochrane-Orcutt法和Prais-Winsten法,而常规的最小二乘技术却是自回归模型参数估计的经典框架。
ACF 是一个完整的自相关函数,可为我们提供具有滞后值的任何序列的自相关值。简单来说,它描述了该序列的当前值与其过去的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值