基于GA-BP遗传算法优化神经网络+NSGAII多目标优化算法的工艺参数优化、工程设计优化!

效果一览

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.GA-BP遗传算法优化神经网络+NSGAII多目标优化算法,工艺参数优化、工程设计优化!(Matlab完整源码和数据)
多目标优化是指在优化问题中同时考虑多个目标的优化过程。在多目标优化中,通常存在多个冲突的目标,即改善一个目标可能会导致另一个目标的恶化。因此,多目标优化的目标是找到一组解,这组解在多个目标下都是最优的,而不是仅仅优化单一目标。
遗传算法是一种随机搜索的方法,其主要思想是根据生物界的自然选择和遗传变异演化来的。遗传算法与其他搜索寻优算法不同,它是随机产生初始化长度为L的个体。对于每个生成的个体都对应一个适应度。个体通过选择、交叉和变异来产生新的个体。而新的个体的的好坏也用适应度来评价。从新生成的个体中选择一部分适应度好的个体来继续进行选择、交叉和变异的操作。在生成的下一代中依然这样循环往复操作,经过N代的操作得到最好的个体。这个个体就可能是所需要寻找的最优解或者次优解。
遗传算法优化BP神经网络分为BP神经网络结构确定,遗传算法优化,BP神经网络预测三部分。其中BP神经网络结构确定部分根据拟合函数输入输出参数个数确定BP神经网络的权值和阀值,种群中每个个体都包含了一个网络所有权值和阀值,个体通过适应度函数计算个体适应度值,遗传算法通过选择、交叉和变异操作找到最优适应度值对应个体。BP神经网络预测用遗传算法得到最优个体对网络初始权值和阀值赋值,网络经训练后预测函数输出。
2.先通过GA-BP封装因变量(y1 y2 y3 y4)与自变量(x1 x2 x3 x4 x5)代理模型,再通过nsga2寻找y极值(y1极大;y2 y3 y4极小),并给出对应的x1 x2 x3 x4 x5Pareto解集。
3.data为数据集,5个输入特征,4个输出变量,NSGAII算法寻极值,求出极值时(max y1; min y2;min y3;min y4)的自变量x1,x2,x3,x4,x5。
4.main1.m为GA-BP神经网络主程序文件、main2.m为NSGAII多目标优化算法主程序文件,依次运行即可,其余为函数文件,无需运行。
5.命令窗口输出R2、MAE、MBE、MAPE、RMSE等评价指标,输出预测对比图、误差分析图、多目标优化算法求解Pareto解集图,可在下载区获取数据和程序内容。
6.适合工艺参数优化、工程设计优化等最优特征组合领域。
5.命令窗口输出R2、MAE、MBE、MAPE、RMSE等评价指标,输出预测对比图、误差分析图、多目标优化算法求解Pareto解集图,可在下载区获取数据和程序内容。
6.适合工艺参数优化、工程设计优化等最优特征组合领域。

在这里插入图片描述

NSGA-II算法的基本思想与技术路线
1) 随机产生规模为N的初始种群Pt,经过非支配排序、 选择、 交叉和变异, 产生子代种群Qt, 并将两个种群联合在一起形成大小为2N的种群Rt;
2)进行快速非支配排序, 同时对每个非支配层中的个体进行拥挤度计算, 根据非支配关系以及个体的拥挤度选取合适的个体组成新的父代种群Pt+1;
3) 通过遗传算法的基本操作产生新的子代种群Qt+1, 将Pt+1与Qt+1合并形成新的种群Rt, 重复以上操作, 直到满足程序结束的条件。
在这里插入图片描述
数据集

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式:私信博主回复基于GA-BP遗传算法优化神经网络+NSGAII多目标优化算法的工艺参数优化、工程设计优化!

%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test );

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
%% 定义结果存放模板
empty.position = [];        %输入变量存放
empty.cost = [];            %目标函数存放
empty.rank = [];            % 非支配排序等级
empty.domination = [];      %支配个体集合
empty.dominated = 0;        %支配个体数目
empty.crowdingdistance = [];%个体聚集距离
pop = repmat(empty, npop, 1);
%% 1、初始化种群
for i = 1 : npop
    pop(i).position = create_x(var);   %产生输入变量(个体)
    pop(i).cost = costfunction(pop(i).position);%计算目标函数
end
%% 2、构造非支配集
[pop,F] = nondominatedsort(pop);
%% 计算聚集距离
pop = calcrowdingdistance(pop,F);
%% 主程序(选择、交叉、变异)

参考资料

基于PSO-BP粒子群优化神经网络+NSGAII多目标优化算法的工艺参数优化、工程设计优化!

工艺参数优化、工程设计优化!GRNN神经网络+NSGAII多目标优化算法(Matlab)

工艺参数优化、工程设计优化陪您跨年!RBF神经网络+NSGAII多目标优化算法(Matlab)
工艺参数优化、工程设计优化来袭!BP神经网络+NSGAII多目标优化算法(Matlab)

北大核心工艺参数优化!SAO-BP雪融算法优化BP神经网络+NSGAII多目标优化算法(Matlab)

工艺参数优化、工程设计优化上新!Elman循环神经网络+NSGAII多目标优化算法(Matlab)

强推未发表!3D图!Transformer-LSTM+NSGAII工艺参数优化、工程设计优化!

SCI配图+多目标优化!Transformer-GRU+NSGAII工艺参数优化、工程设计优化!

内容概要:本文档详述了一个名为“Python 实现GA-BP遗传算法优化BP神经网络”的项目实例,其目的是构建一个多输入多输出的高效模型。文中全面解析了项目从背景动机、目标意义、面临的挑战到最后的未来展望整个生命周期的内容。文中特别强调了将遗传算法(GA)BP神经网络结合起来的应用方法和技术实现细节,以及两者融合所具有的独特的优势,如全球寻优能力强、自动确定神经网络内部的最优结构特性。该组合能够显著提升多输入多输出预测系统的效率,尤其针对时间序列预测、模式识别等多种复杂的现实应用有巨大贡献。 适用人群:适合有一定 Python 编程和机器学习基础知识的工程师,尤其是从事数据分析、机器学习、数据科学领域的专业人员或科研人士。 使用场景及目标:①帮助研究人员和开发人员掌握如何在BP基础上叠加遗传算法优化多输入多输出场景下的神经网络,包括权值调整、结构自动设计;②提高预测任务中的精度,解决传统方法难以避免的缺点(如过拟合并发的高偏差等问题)。 其他说明:本项目除了理论讲解之外,还给出了详细的代码示例,并提供了图形界面的操作指南以促进理解和实践,使得即使对于新手来说也有很好的指导意义。同时讨论了一些实用技巧和注意事项,比如怎样预防计算中可能出现的风险,以及提出了关于模型后续扩展的方向等议题。此外,该实例也介绍了从环境搭建到模型部署的全部流程,有助于学习者了解整个项目的全貌。最后提到了防止过拟合的方法论、优化器参数微调等方面的经验分享,为用户提供了更丰富的参考资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值