代码功能
该代码使用物理信息神经网络(PINN) 求解二维椭圆型偏微分方程(泊松方程),核心功能为:
- 构建全连接神经网络逼近PDE解函数
- 将物理方程(泊松方程)作为约束融入损失函数
- 使用有限差分法计算拉普拉斯算子
- 数值求解并可视化结果,与解析解对比验证
算法步骤
-
问题定义:
- 求解区域:Ω = [0,1]×[0,1]
- 控制方程:-Δu = f,其中 f = 2π²sin(πx)sin(πy)
- 边界条件:u|∂Ω = 0
- 解析解:u(x,y) = sin(πx)sin(πy)
-
数据准备:
- 区域内采样:1000个随机点
- 边界采样:每条边200个点,共800个边界点
-
网络构建:
- 输入层:2个神经元(x,y坐标)
- 隐藏层:3层,每层20个神经元,tanh激活
- 输出层:1个神经元(解函数值u)
-
训练过程:
- 计算残差损失:PDE方程在内部点的满足程度
- 计算边界损失:边界条件的满足程度
- 加权总损失:总损失 = 残差损失 + 100×边界损失
- 梯度下降优化:3000轮迭代
-
结果验证:
- 网格点预测并与解析解对比
- 误差分析和可视化
技术路线
参数设定
参数类别 | 参数名 | 值 | 说明 |
---|---|---|---|
采样参数 | N_interior | 1000 | 内部采样点数 |
N_boundary | 200 | 单边边界点数 | |
网络结构 | hiddenLayers | [20,20,20] | 3层隐藏层 |
activation | tanh | 激活函数 | |
训练参数 | numEpochs | 3000 | 训练轮数 |
learningRate | 0.001 | 学习率 | |
boundaryWeight | 100 | 边界损失权重 | |
数值方法 | FD_step | 1e-4 | 有限差分步长 |
公式原理
-
控制方程:
−∇2u=f(x,y)在Ω内u=0在∂Ω上 -∇²u = f(x,y) 在 Ω 内 u = 0 在 ∂Ω 上 −∇2u=f(x,y)在Ω内u=0在∂Ω上 -
残差定义:
R(x,y)=−∇2u(x,y)−f(x,y) R(x,y) = -∇²u(x,y) - f(x,y) R(x,y)=−∇2u(x,y)−f(x,y) -
损失函数:
L=Lres+λ⋅Lbdy L = L_res + λ·L_bdy L=Lres+λ⋅Lbdy
Lres=1/Nint∑[R(xi,yi)]2 L_res = 1/N_int ∑[R(x_i,y_i)]² Lres=1/Nint∑[R(xi,yi)]2
Lbdy=1/Nbdy∑[u(xb,yb)−0]2 L_bdy = 1/N_bdy ∑[u(x_b,y_b) - 0]² Lbdy=1/Nbdy∑[u(xb,yb)−0]2 -
有限差分近似:
∂2u/∂x2≈[u(x+h,y)−2u(x,y)+u(x−h,y)]/h2 ∂²u/∂x² ≈ [u(x+h,y) - 2u(x,y) + u(x-h,y)]/h² ∂2u/∂x2≈[u(x+h,y)−2u(x,y)+u(x−h,y)]/h2
∂2u/∂y2≈[u(x,y+h)−2u(x,y)+u(x,y−h)]/h2 ∂²u/∂y² ≈ [u(x,y+h) - 2u(x,y) + u(x,y-h)]/h² ∂2u/∂y2≈[u(x,y+h)−2u(x,y)+u(x,y−h)]/h2
∇2u=∂2u/∂x2+∂2u/∂y2 ∇²u = ∂²u/∂x² + ∂²u/∂y² ∇2u=∂2u/∂x2+∂2u/∂y2
运行环境要求
-
软件环境:
- MATLAB R2020b或更新版本
- Deep Learning Toolbox
- 支持自动微分功能
-
硬件要求:
- 最低配置:4GB内存
- 推荐配置:8GB+内存(用于大规模采样点)
-
依赖项:
dlarray
、dlnetwork
等深度学习工具箱函数- 自动微分框架
应用场景
-
工程计算:
- 结构力学:弹性力学问题
- 流体力学:势流问题
- 热传导:稳态温度场
-
科学研究:
- 电磁场计算
- 量子力学薛定谔方程
- 地球物理反问题
-
工业应用:
- 汽车/航空航天部件设计
- 电子设备散热分析
- 建筑结构分析
-
教育领域:
- 偏微分方程数值解教学
- 物理信息机器学习示范
创新点
- 物理约束嵌入:将PDE直接融入神经网络训练
- 无网格方法:无需传统FEM的网格划分
- 灵活边界处理:边界条件作为软约束融入损失函数
- 自动微分替代:使用有限差分法计算高阶导数,增强稳定性
优势与局限
优势:
- 适用于复杂几何形状
- 易于实现逆问题求解
- 可处理高维问题
局限:
- 训练收敛性不确定
- 对超参数敏感
- 计算成本可能高于传统方法
该代码展示了PINN在科学计算中的典型应用,为传统数值方法提供了有前景的替代方案。