MATLAB物理信息神经网络(PINN) 求解二维椭圆型偏微分方程(泊松方程),核心功能为构建全连接神经网络逼近PDE解函数,将物理方程(泊松方程)作为约束融入损失函数

代码功能

该代码使用物理信息神经网络(PINN) 求解二维椭圆型偏微分方程(泊松方程),核心功能为:

  • 构建全连接神经网络逼近PDE解函数
  • 将物理方程(泊松方程)作为约束融入损失函数
  • 使用有限差分法计算拉普拉斯算子
  • 数值求解并可视化结果,与解析解对比验证

算法步骤

  1. 问题定义

    • 求解区域:Ω = [0,1]×[0,1]
    • 控制方程:-Δu = f,其中 f = 2π²sin(πx)sin(πy)
    • 边界条件:u|∂Ω = 0
    • 解析解:u(x,y) = sin(πx)sin(πy)
  2. 数据准备

    • 区域内采样:1000个随机点
    • 边界采样:每条边200个点,共800个边界点
  3. 网络构建

    • 输入层:2个神经元(x,y坐标)
    • 隐藏层:3层,每层20个神经元,tanh激活
    • 输出层:1个神经元(解函数值u)
  4. 训练过程

    • 计算残差损失:PDE方程在内部点的满足程度
    • 计算边界损失:边界条件的满足程度
    • 加权总损失:总损失 = 残差损失 + 100×边界损失
    • 梯度下降优化:3000轮迭代
  5. 结果验证

    • 网格点预测并与解析解对比
    • 误差分析和可视化

技术路线

PDE问题定义
采样点生成
神经网络构建
损失函数设计
梯度计算与更新
结果预测与验证
误差分析与可视化
内部点采样
边界点采样
残差损失
边界损失
有限差分计算拉普拉斯
参数梯度更新

参数设定

参数类别参数名说明
采样参数N_interior1000内部采样点数
N_boundary200单边边界点数
网络结构hiddenLayers[20,20,20]3层隐藏层
activationtanh激活函数
训练参数numEpochs3000训练轮数
learningRate0.001学习率
boundaryWeight100边界损失权重
数值方法FD_step1e-4有限差分步长

公式原理

  1. 控制方程
    −∇2u=f(x,y)在Ω内u=0在∂Ω上 -∇²u = f(x,y) 在 Ω 内 u = 0 在 ∂Ω 上 2u=f(x,y)Ωu=0Ω

  2. 残差定义
    R(x,y)=−∇2u(x,y)−f(x,y) R(x,y) = -∇²u(x,y) - f(x,y) R(x,y)=2u(x,y)f(x,y)

  3. 损失函数
    L=Lres+λ⋅Lbdy L = L_res + λ·L_bdy L=Lres+λLbdy
    Lres=1/Nint∑[R(xi,yi)]2 L_res = 1/N_int ∑[R(x_i,y_i)]² Lres=1/Nint[R(xi,yi)]2
    Lbdy=1/Nbdy∑[u(xb,yb)−0]2 L_bdy = 1/N_bdy ∑[u(x_b,y_b) - 0]² Lbdy=1/Nbdy[u(xb,yb)0]2

  4. 有限差分近似
    ∂2u/∂x2≈[u(x+h,y)−2u(x,y)+u(x−h,y)]/h2 ∂²u/∂x² ≈ [u(x+h,y) - 2u(x,y) + u(x-h,y)]/h² 2u/x2[u(x+h,y)2u(x,y)+u(xh,y)]/h2
    ∂2u/∂y2≈[u(x,y+h)−2u(x,y)+u(x,y−h)]/h2 ∂²u/∂y² ≈ [u(x,y+h) - 2u(x,y) + u(x,y-h)]/h² 2u/y2[u(x,y+h)2u(x,y)+u(x,yh)]/h2
    ∇2u=∂2u/∂x2+∂2u/∂y2 ∇²u = ∂²u/∂x² + ∂²u/∂y² 2u=2u/x2+2u/y2

运行环境要求

  1. 软件环境

    • MATLAB R2020b或更新版本
    • Deep Learning Toolbox
    • 支持自动微分功能
  2. 硬件要求

    • 最低配置:4GB内存
    • 推荐配置:8GB+内存(用于大规模采样点)
  3. 依赖项

    • dlarraydlnetwork等深度学习工具箱函数
    • 自动微分框架

应用场景

  1. 工程计算

    • 结构力学:弹性力学问题
    • 流体力学:势流问题
    • 热传导:稳态温度场
  2. 科学研究

    • 电磁场计算
    • 量子力学薛定谔方程
    • 地球物理反问题
  3. 工业应用

    • 汽车/航空航天部件设计
    • 电子设备散热分析
    • 建筑结构分析
  4. 教育领域

    • 偏微分方程数值解教学
    • 物理信息机器学习示范

创新点

  1. 物理约束嵌入:将PDE直接融入神经网络训练
  2. 无网格方法:无需传统FEM的网格划分
  3. 灵活边界处理:边界条件作为软约束融入损失函数
  4. 自动微分替代:使用有限差分法计算高阶导数,增强稳定性

优势与局限

优势

  • 适用于复杂几何形状
  • 易于实现逆问题求解
  • 可处理高维问题

局限

  • 训练收敛性不确定
  • 对超参数敏感
  • 计算成本可能高于传统方法

该代码展示了PINN在科学计算中的典型应用,为传统数值方法提供了有前景的替代方案。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值