ollama 部署自己微调过的模型

使用 Ollama 导入模型

本指南将介绍如何在 Ollama 中导入 GGUF、PyTorch 或 Safetensors 模型。

导入 GGUF 模型

第一步:编写 Modelfile

首先创建一个 Modelfile。该文件是模型的蓝图,用于指定权重、参数、提示模板等。

示例 Modelfile:

FROM ./mistral-7b-v0.1.Q4_0.gguf
TEMPLATE "[INST] {
  { .Prompt }} [/INST]"

第二步:创建 Ollama 模型

使用 Modelfile 创建一个模型:

ollama create example -f Modelfile

第三步:运行你的模型

使用以下命令测试模型:

ollama run example "你最喜欢的调味品是什么?"

导入 PyTorch 和 Safetensors 模型

从 PyTorch 和 Safetensors 导入模型的过程比导入 GGUF 更长,改进工作正在进行中。

### Ollama平台部署微调大型模型 #### 部署准备 为了成功部署并使用Ollama平台上的大型模型,首先要确保能够访问Ollama模型库,这一步骤对于下载和利用预构建的模型至关重要[^4]。 #### 基础命令概览 在Ollama平台上操作模型主要依赖一系列基础命令。这些命令涵盖了从管理现有模型到执行特定任务的各种功能。例如,`ollama list`用于展示当前可用的模型列表;而要获取某个具体模型的信息,则可以通过`ollama show <模型名>`实现。当需要移除不再使用的模型时,可采用`ollama rm <模型名>`来完成这一操作[^1]。 #### GGUF格式模型部署流程 针对GGUF格式的模型文件,在Ollama环境中部署涉及几个关键步骤。首先是导入模型Ollama系统内,假设已有一个经过微调处理得到的GGUF模型文件位于指定路径下(如`/path/to/output.gguf`),那么接下来便是将其正式加入到Ollama的服务体系之中[^5]。 #### 微调过程中的注意事项 考虑到性能优化以及资源的有效分配,在对大型语言模型实施微调之前应当充分评估硬件条件和支持能力。此外,编写专门的方法比如`askLocalEchartsModel`可以帮助更好地封装与定制化交互逻辑,其中涉及到向选定的微调版Echarts模型发送查询请求的过程[^3]。 ```python def askLocalEchartsModel(prompt): model_name = "micro_tuned_echarts_model" command = f"ollama run {model_name} '{prompt}'" result = subprocess.run(command, shell=True, capture_output=True, text=True) return result.stdout.strip() ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值