LSTM时序预测-Long Short-Term Memory Time Series Prediction

LSTM时序预测详细介绍

源码

什么是LSTM时序预测?

LSTM时序预测(Long Short-Term Memory Time Series Prediction)是一种基于**长短期记忆网络(Long Short-Term Memory, LSTM)**的时间序列预测方法。LSTM是一种特殊类型的循环神经网络(Recurrent Neural Network, RNN),专门设计用于解决传统RNN在处理长序列数据时的梯度消失和梯度爆炸问题。LSTM通过引入门控机制(输入门、遗忘门和输出门)能够有效地捕捉和记忆时间序列中的长期依赖关系,从而在诸如金融市场预测、能源负荷预测、气象预测等领域展现出优异的性能。

LSTM的组成部分
  1. 输入层(Input Layer)

    • 接收时间序列数据的特征向量,通常是多维的时间步长数据。
  2. LSTM层(LSTM Layer)

    • 核心部分,包含多个LSTM单元,通过门控机制控制信息的流动和记忆的更新。
    • 输入门(Input Gate):控制当前输入信息的重要性。
    • 遗忘门(Forget Gate):决定保留多少之前的记忆。
    • 输出门(Output Gate):控制输出的信息量。
  3. 激活层(Activation Layer)

    • 通常使用ReLU(Rectified Linear Unit)等激活函数,引入非线性因素,提升模型的表达能力。
  4. 全连接层(Fully Connected Layer)

    • 将LSTM层的输出映射到目标变量空间,实现最终的预测。
  5. 回归层(Regression Layer)

    • 用于回归任务,计算预测值与真实值之间的误差。
LSTM时序预测的工作原理

LSTM时序预测通过以下步骤实现时间序列的预测任务:

  1. 数据准备与预处理

    • 数据收集与整理:收集时间序列数据,处理缺失值和异常值,确保数据质量。
    • 数据构造:利用延迟步长(lag)将时间序列数据转换为监督学习问题的输入输出对,构建特征矩阵和目标向量。
    • 数据归一化:对输入数据和目标变量进行归一化或标准化处理,以加快训练速度和提高模型稳定性。
  2. 构建LSTM神经网络

    • 初始化网络:定义LSTM神经网络的结构,包括输入层、LSTM层、激活层、全连接层和回归层的节点数。
    • 设置训练参数:设定训练参数,如优化算法(例如Adam)、最大训练次数、学习率、梯度阈值和正则化参数等。
  3. 模型训练与优化

    • 使用训练集数据训练LSTM神经网络,通过反向传播算法调整网络权重和偏置,最小化预测误差。
    • 训练选项:配置训练选项,如学习率调整策略、梯度裁剪、正则化等,以提升模型的训练效果和泛化能力。
  4. 模型预测与评估

    • 使用训练好的LSTM模型对训练集和测试集数据进行预测,得到预测结果。
    • 计算预测误差和其他性能指标(如RMSE、R²、MAE等),评估模型的预测准确性和泛化能力。
  5. 结果分析与可视化

    • 预测结果对比图:绘制真实值与预测值的对比图,直观展示模型的预测效果。
    • 散点图:绘制真实值与预测值的散点图,评估模型的拟合能力。
    • 适应度变化曲线:展示训练过程中损失函数的变化趋势,了解模型的收敛情况。
    • 误差分析:分析预测误差的分布和趋势,了解模型的优缺点。
LSTM时序预测的优势
  1. 捕捉长期依赖

    • LSTM通过门控机制能够有效地捕捉和记忆时间序列中的长期依赖关系,提升模型对复杂时间序列的建模能力。
  2. 抗梯度消失与爆炸

    • 相较于传统RNN,LSTM通过结构上的设计解决了梯度消失和梯度爆炸的问题,确保模型在训练长序列时的稳定性。
  3. 灵活性强

    • LSTM网络可以根据数据的特性调整层数和节点数,适应不同复杂度的时间序列预测任务。
  4. 广泛应用领域

    • LSTM时序预测在金融、能源、气象、制造、医疗等多个领域都有广泛的应用,具有很高的实用价值。
LSTM时序预测的应用

LSTM时序预测广泛应用于各类需要高精度时间序列预测的领域,包括但不限于:

  1. 金融预测

    • 股市价格预测:预测股票市场的未来价格走势,辅助投资决策。
    • 经济指标预测:预测GDP、通胀率等宏观经济指标,为政策制定提供参考。
  2. 能源与电力

    • 电力负荷预测:预测未来电力需求,优化电网调度和资源分配。
    • 能源消耗预测:预测能源消耗趋势,辅助能源管理和规划。
  3. 工程与制造

    • 设备故障预测:预测设备的潜在故障,进行预防性维护,减少停机时间。
    • 生产过程控制:拟合和预测制造过程中关键参数,优化生产流程,确保产品质量。
  4. 环境科学

    • 气象预测:预测未来的气温、降水量等气象指标,辅助天气预报。
    • 污染物浓度预测:预测空气或水体中的污染物浓度,进行环境监测和管理。
  5. 医疗健康

    • 疾病风险预测:预测个体患某种疾病的风险,辅助医疗决策和健康管理。
    • 医疗费用预测:预测患者的医疗费用支出,优化医疗资源分配。
  6. 市场营销

    • 销售预测:预测产品的未来销售量,优化库存管理和市场策略。
    • 客户需求预测:预测客户的购买行为和需求变化,制定精准的营销策略。
如何使用LSTM时序预测

使用LSTM时序预测模型主要包括以下步骤:

  1. 准备数据集

    • 数据收集与整理:确保时间序列数据的完整性和准确性,处理缺失值和异常值。
    • 数据构造:利用延迟步长(lag)将时间序列数据转换为监督学习问题的输入输出对,构建特征矩阵和目标向量。
    • 数据归一化:对输入数据和目标变量进行归一化或标准化处理,以加快训练速度和提高模型稳定性。
  2. 构建LSTM神经网络

    • 初始化网络:定义LSTM神经网络的结构,包括输入层、LSTM层、激活层、全连接层和回归层的节点数。
    • 设置训练参数:设定训练参数,如优化算法(例如Adam)、最大训练次数、学习率、梯度阈值和正则化参数等。
  3. 模型训练与优化

    • 使用训练集数据训练LSTM神经网络,通过反向传播算法调整网络权重和偏置,最小化预测误差。
    • 训练选项:配置训练选项,如学习率调整策略、梯度裁剪、正则化等,以提升模型的训练效果和泛化能力。
  4. 模型预测与评估

    • 使用训练好的LSTM模型对训练集和测试集数据进行预测,得到预测结果。
    • 计算预测误差和其他性能指标(如RMSE、R²、MAE等),评估模型的预测准确性和泛化能力。
  5. 模型评估与优化

    • 计算性能指标:计算RMSE、R²、MAE、MBE、MAPE等指标,全面评估模型的性能。
    • 优化模型参数:根据性能指标调整LSTM网络的参数(如隐藏层神经元数量、学习率等),进一步优化模型性能。
  6. 结果分析与可视化

    • 预测结果对比图:绘制训练集和测试集的真实值与预测值对比图,直观展示模型的预测效果。
    • 散点图:绘制真实值与预测值的散点图,评估模型的拟合能力。
    • 适应度变化曲线:绘制训练过程中损失函数的变化曲线,了解模型的收敛情况。
    • 误差分析:分析RMSE、R²、MAE、MBE、MAPE等指标,

全面评估模型的性能和预测准确性。

通过理解和应用上述LSTM时序预测模型,用户可以有效地处理各种时间序列预测任务,充分发挥LSTM在捕捉长期依赖和处理复杂时间序列数据方面的优势,提升模型的预测准确性和鲁棒性。


代码简介

该MATLAB代码实现了基于**长短期记忆网络(LSTM)**的时间序列预测算法,简称“LSTM时序预测”。主要流程如下:

  1. 数据预处理

    • 导入时间序列数据,并构造监督学习的数据集。
    • 将数据集划分为训练集和测试集。
    • 对输入数据和目标变量进行归一化处理。
    • 将数据平铺成适合LSTM网络的格式。
  2. LSTM模型构建与训练

    • 定义LSTM神经网络的结构,包括输入层、LSTM层、激活层、全连接层和回归层。
    • 设置训练参数,如优化算法(Adam)、最大训练次数、学习率等。
    • 使用训练集数据训练LSTM神经网络,优化模型参数。
  3. 结果分析与可视化

    • 使用训练好的LSTM模型对训练集和测试集进行预测。
    • 计算并显示相关回归性能指标(RMSE、R²、MAE、MBE、MAPE)。
    • 绘制训练集和测试集的真实值与预测值对比图、适应度变化曲线以及散点图,直观展示回归效果和模型性能。

以下是包含详细中文注释的LSTM时序预测MATLAB代码。


MATLAB代码(添加详细中文注释)

%% 清空环境变量
warning off             % 关闭所有警告信息,避免运行过程中显示不必要的警告
close all               % 关闭所有打开的图形窗口,确保绘图环境的干净
clear                   % 清除工作区中的所有变量,确保没有残留变量影响结果
clc                     % 清空命令行窗口,提升可读性

%% 导入数据(时间序列的单列数据)
result = xlsread('数据集.xlsx');  % 从Excel文件中读取时间序列数据,假设数据为单列

%% 数据分析
num_samples = length(result);  % 计算时间序列数据的样本数量(数据点数)
kim = 15;                      % 设定延时步长(lag),即使用15个历史数据点作为输入特征
zim =  1;                      % 设定预测步长(forecast step),即预测当前点之后的1个时间点

%% 划分数据集
for i = 1:num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i:i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end
% 循环遍历时间序列数据,构建输入特征和对应的目标变量
% 每一行res包含15个历史数据点和1个未来数据点

%% 数据集分析
outdim = 1;                                  % 设定数据集的最后一列为输出(目标变量)
num_size = 0.7;                              % 设定训练集占数据集的比例(70%训练集,30%测试集)
num_train_s = round(num_size * num_samples); % 计算训练集样本个数,通过四舍五入确定
f_ = size(res, 2) - outdim;                  % 计算输入特征的维度,即总列数减去输出维度

%% 划分训练集和测试集
P_train = res(1:num_train_s, 1:f_)';         % 训练集输入特征,转置使每列为一个样本 (f_ × M)
T_train = res(1:num_train_s, f_ + 1:end)';   % 训练集输出目标变量,转置使每列为一个样本 (outdim × M)
M = size(P_train, 2);                        % 获取训练集的样本数量

P_test = res(num_train_s + 1:end, 1:f_)';    % 测试集输入特征,转置使每列为一个样本 (f_ × N)
T_test = res(num_train_s + 1:end, f_ + 1:end)';% 测试集输出目标变量,转置使每列为一个样本 (outdim × N)
N = size(P_test, 2);                         % 获取测试集的样本数量

%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);         % 对训练集输入特征进行归一化,范围[0,1]
P_test = mapminmax('apply', P_test, ps_input);           % 使用训练集的归一化参数对测试集输入特征进行归一化

[t_train, ps_output] = mapminmax(T_train, 0, 1);         % 对训练集输出目标变量进行归一化,范围[0,1]
t_test = mapminmax('apply', T_test, ps_output);           % 使用训练集的归一化参数对测试集输出目标变量进行归一化

%% 数据平铺
% 将数据平铺成4维数据,适应MATLAB的LSTM网络输入格式
% 输入格式:[特征数, 序列长度, 1, 样本数]
P_train = double(reshape(P_train, f_, 1, 1, M));       % 将训练集输入数据平铺成4维数组
P_test  = double(reshape(P_test , f_, 1, 1, N));       % 将测试集输入数据平铺成4维数组

t_train = t_train';  % 转置训练集输出数据,使其成为行向量
t_test  = t_test';   % 转置测试集输出数据,使其成为行向量

%% 数据格式转换
for i = 1:M
    p_train{i, 1} = P_train(:, :, 1, i);   % 将训练集输入数据转换为cell数组,每个cell对应一个样本
end

for i = 1:N
    p_test{i, 1}  = P_test(:, :, 1, i);    % 将测试集输入数据转换为cell数组,每个cell对应一个样本
end

%% 创建模型
layers = [
    sequenceInputLayer(f_)              % 建立输入层,输入特征维度为f_
    
    lstmLayer(10, 'OutputMode', 'last') % 添加LSTM层,隐藏单元数为10,输出模式为“last”表示只输出最后一个时间步的结果
    reluLayer                           % 添加ReLU激活层,增加网络的非线性表达能力
    
    fullyConnectedLayer(1)              % 添加全连接层,输出维度为1,适用于单步预测的回归任务
    regressionLayer];                   % 添加回归层,用于计算预测误差
% 该网络结构包含一个LSTM层,一个ReLU激活层,一个全连接层和一个回归层

%% 参数设置
% 设置训练选项,使用Adam优化器
options = trainingOptions('adam', ...                 % 优化算法Adam
    'MaxEpochs', 300, ...                             % 最大训练次数为300
    'GradientThreshold', 1, ...                       % 设置梯度阈值,防止梯度爆炸
    'InitialLearnRate', 5e-3, ...                     % 初始学习率为0.005
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整策略为分段调整
    'LearnRateDropPeriod', 250, ...                   % 每250次训练后调整学习率
    'LearnRateDropFactor',0.1, ...                    % 学习率下降因子为0.1
    'L2Regularization', 1e-4, ...                     % L2正则化参数为1e-4,防止过拟合
    'ExecutionEnvironment', 'auto',...                % 自动选择训练环境(CPU或GPU)
    'Verbose', false, ...                             % 关闭详细训练信息显示
    'Plots', 'training-progress');                    % 显示训练过程的进度图

%% 训练模型
net = trainNetwork(p_train, t_train, layers, options); % 使用训练集数据训练LSTM神经网络

%% 仿真预测
t_sim1 = predict(net, p_train);   % 使用训练集数据进行仿真预测,得到训练集预测结果
t_sim2 = predict(net, p_test );    % 使用测试集数据进行仿真预测,得到测试集预测结果

%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);  % 将训练集预测结果反归一化,恢复到原始尺度
T_sim2 = mapminmax('reverse', t_sim2, ps_output);  % 将测试集预测结果反归一化,恢复到原始尺度

%% 均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);  % 计算训练集的均方根误差(RMSE)
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);  % 计算测试集的均方根误差(RMSE)

%% 查看网络结构
analyzeNetwork(net) % 可视化和分析LSTM网络的结构和参数

%% 绘图
% 绘制训练集预测结果对比图
figure
plot(1:M, T_train, 'r-', 1:M, T_sim1, 'b-', 'LineWidth', 1) % 绘制训练集真实值与预测值的对比曲线,红色实线为真实值,蓝色实线为预测值
legend('真实值', '预测值')                                        % 添加图例,区分真实值和预测值
xlabel('预测样本')                                                % 设置X轴标签为“预测样本”
ylabel('预测结果')                                                % 设置Y轴标签为“预测结果”
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};      % 创建标题字符串,包括RMSE值
title(string)                                                    % 添加图形标题
xlim([1, M])                                                     % 设置X轴显示范围为[1, M]
grid                                                             % 显示网格,提升图形的可读性

% 绘制测试集预测结果对比图
figure
plot(1:N, T_test, 'r-', 1:N, T_sim2, 'b-', 'LineWidth', 1)   % 绘制测试集真实值与预测值的对比曲线,红色实线为真实值,蓝色实线为预测值
legend('真实值', '预测值')                                        % 添加图例,区分真实值和预测值
xlabel('预测样本')                                                % 设置X轴标签为“预测样本”
ylabel('预测结果')                                                % 设置Y轴标签为“预测结果”
string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};       % 创建标题字符串,包括RMSE值
title(string)                                                    % 添加图形标题
xlim([1, N])                                                     % 设置X轴显示范围为[1, N]
grid                                                             % 显示网格,提升图形的可读性

%% 相关指标计算
% 决定系数(R²)
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;  % 计算训练集的决定系数R²
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;  % 计算测试集的决定系数R²

disp(['训练集数据的R2为:', num2str(R1)])  % 显示训练集的R²
disp(['测试集数据的R2为:', num2str(R2)])  % 显示测试集的R²

% 平均绝对误差(MAE)
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;  % 计算训练集的平均绝对误差MAE
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;  % 计算测试集的平均绝对误差MAE

disp(['训练集数据的MAE为:', num2str(mae1)])  % 显示训练集的MAE
disp(['测试集数据的MAE为:', num2str(mae2)])  % 显示测试集的MAE

% 平均偏差误差(MBE)
mbe1 = sum(T_sim1' - T_train) ./ M ;  % 计算训练集的平均偏差误差MBE
mbe2 = sum(T_sim2' - T_test ) ./ N ;  % 计算测试集的平均偏差误差MBE

disp(['训练集数据的MBE为:', num2str(mbe1)])  % 显示训练集的MBE
disp(['测试集数据的MBE为:', num2str(mbe2)])  % 显示测试集的MBE

% 平均绝对百分比误差(MAPE)
mape1 = sum(abs((T_sim1' - T_train)./T_train)) ./ M ;  % 计算训练集的平均绝对百分比误差MAPE
mape2 = sum(abs((T_sim2' - T_test )./T_test )) ./ N ;  % 计算测试集的平均绝对百分比误差MAPE

disp(['训练集数据的MAPE为:', num2str(mape1)])  % 显示训练集的MAPE
disp(['测试集数据的MAPE为:', num2str(mape2)])  % 显示测试集的MAPE

% 均方根误差(RMSE)
disp(['训练集数据的RMSE为:', num2str(error1)])  % 显示训练集的RMSE
disp(['测试集数据的RMSE为:', num2str(error2)])  % 显示测试集的RMSE

%% 绘制散点图
sz = 25;       % 设置散点的大小为25
c = 'b';       % 设置散点的颜色为蓝色

% 绘制训练集散点图
figure
scatter(T_train, T_sim1, sz, c)              % 绘制训练集真实值与预测值的散点图,蓝色散点表示预测结果
hold on                                       % 保持当前图形,允许在同一图形上绘制多条曲线
plot(xlim, ylim, '--k')                      % 绘制理想预测线(真实值等于预测值的对角线),使用黑色虚线表示
xlabel('训练集真实值');                        % 设置X轴标签为“训练集真实值”
ylabel('训练集预测值');                        % 设置Y轴标签为“训练集预测值”
xlim([min(T_train) max(T_train)])             % 设置X轴的显示范围为[最小真实值, 最大真实值]
ylim([min(T_sim1) max(T_sim1)])               % 设置Y轴的显示范围为[最小预测值, 最大预测值]
title('训练集预测值 vs. 训练集真实值')            % 设置图形的标题为“训练集预测值 vs. 训练集真实值”

% 绘制测试集散点图
figure
scatter(T_test, T_sim2, sz, c)               % 绘制测试集真实值与预测值的散点图,蓝色散点表示预测结果
hold on                                       % 保持当前图形,允许在同一图形上绘制多条曲线
plot(xlim, ylim, '--k')                      % 绘制理想预测线(真实值等于预测值的对角线),使用黑色虚线表示
xlabel('测试集真实值');                         % 设置X轴标签为“测试集真实值”
ylabel('测试集预测值');                         % 设置Y轴标签为“测试集预测值”
xlim([min(T_test) max(T_test)])                % 设置X轴的显示范围为[最小真实值, 最大真实值]
ylim([min(T_sim2) max(T_sim2)])                % 设置Y轴的显示范围为[最小预测值, 最大预测值]
title('测试集预测值 vs. 测试集真实值')             % 设置图形的标题为“测试集预测值 vs. 测试集真实值”

代码说明

1. 清空环境变量
warning off             % 关闭所有警告信息,避免运行过程中显示不必要的警告
close all               % 关闭所有打开的图形窗口,确保绘图环境的干净
clear                   % 清除工作区中的所有变量,确保没有残留变量影响结果
clc                     % 清空命令行窗口,提升可读性
  • warning off:关闭MATLAB中的所有警告信息,避免在代码运行过程中显示不必要的警告。
  • close all:关闭所有打开的图形窗口,避免之前的图形干扰当前的绘图。
  • clear:清除工作区中的所有变量,确保代码运行环境的干净。
  • clc:清空命令行窗口,提升可读性。
2. 导入数据
result = xlsread('数据集.xlsx');  % 从Excel文件中读取时间序列数据,假设数据为单列
  • xlsread:从指定的Excel文件数据集.xlsx中读取时间序列数据。
  • result:存储读取的时间序列数据,假设数据为单列,表示时间序列的连续值。
3. 数据分析
num_samples = length(result);  % 计算时间序列数据的样本数量(数据点数)
kim = 15;                      % 设定延时步长(lag),即使用15个历史数据点作为输入特征
zim =  1;                      % 设定预测步长(forecast step),即预测当前点之后的1个时间点
  • num_samples:计算时间序列数据的样本数量,即数据点的总数。
  • kim:设定延时步长(lag),即每次使用15个连续的历史数据点作为输入特征,用于预测未来的值。
  • zim:设定预测步长(forecast step),即预测当前点之后的1个时间点的值。
4. 划分数据集
for i = 1:num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i:i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end
  • 循环构造数据集
    • 遍历时间序列数据,从第1个数据点到第num_samples - kim - zim + 1个数据点。
    • reshape(result(i:i + kim - 1), 1, kim):将连续的kim个历史数据点转换为1行kim列的向量,作为输入特征。
    • result(i + kim + zim - 1):获取当前输入特征对应的目标变量,即第kim + zim个时间点的值。
    • res(i, 😃:将输入特征和目标变量组合成一行,存储在结果矩阵res中。
5. 数据集分析
outdim = 1;                                  % 设定数据集的最后一列为输出(目标变量)
num_size = 0.7;                              % 设定训练集占数据集的比例(70%训练集,30%测试集)
num_train_s = round(num_size * num_samples); % 计算训练集样本个数,通过四舍五入确定
f_ = size(res, 2) - outdim;                  % 计算输入特征的维度,即总列数减去输出维度
  • outdim:设定数据集的最后一列为输出(目标变量)。
  • num_size:设定训练集占数据集的比例为70%,剩余30%作为测试集。
  • num_train_s:计算训练集的样本数量,通过round函数对训练集比例与总样本数的乘积进行四舍五入。
  • f_:计算输入特征的维度,即数据集的总列数减去输出维度。
6. 划分训练集和测试集
P_train = res(1:num_train_s, 1:f_)';         % 训练集输入特征,转置使每列为一个样本 (f_ × M)
T_train = res(1:num_train_s, f_ + 1:end)';   % 训练集输出目标变量,转置使每列为一个样本 (outdim × M)
M = size(P_train, 2);                        % 获取训练集的样本数量

P_test = res(num_train_s + 1:end, 1:f_)';    % 测试集输入特征,转置使每列为一个样本 (f_ × N)
T_test = res(num_train_s + 1:end, f_ + 1:end)';% 测试集输出目标变量,转置使每列为一个样本 (outdim × N)
N = size(P_test, 2);                         % 获取测试集的样本数量
  • P_train:提取前num_train_s个样本的输入特征,并进行转置,使每列为一个样本。
  • T_train:提取前num_train_s个样本的输出(目标变量),并进行转置,使每列为一个样本。
  • M:获取训练集的样本数量。
  • P_test:提取剩余样本的输入特征,并进行转置,使每列为一个样本。
  • T_test:提取剩余样本的输出(目标变量),并进行转置,使每列为一个样本。
  • N:获取测试集的样本数量。
7. 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);         % 对训练集输入特征进行归一化,范围[0,1]
P_test = mapminmax('apply', P_test, ps_input);           % 使用训练集的归一化参数对测试集输入特征进行归一化

[t_train, ps_output] = mapminmax(T_train, 0, 1);         % 对训练集输出目标变量进行归一化,范围[0,1]
t_test = mapminmax('apply', T_test, ps_output);           % 使用训练集的归一化参数对测试集输出目标变量进行归一化
  • mapminmax:使用mapminmax函数将数据缩放到指定的范围内(这里为[0,1])。
  • P_train:归一化后的训练集输入特征数据。
  • ps_input:保存输入特征的归一化参数,以便对测试集数据进行相同的归一化处理。
  • P_test:使用训练集的归一化参数对测试集输入特征数据进行归一化,确保训练集和测试集的数据尺度一致。
  • t_train:归一化后的训练集输出目标变量数据。
  • ps_output:保存输出目标变量的归一化参数,以便对测试集数据进行相同的归一化处理。
  • t_test:使用训练集的归一化参数对测试集输出目标变量数据进行归一化。
8. 数据平铺
% 将数据平铺成4维数据,适应MATLAB的LSTM网络输入格式
% 输入格式:[特征数, 序列长度, 1, 样本数]
P_train = double(reshape(P_train, f_, 1, 1, M));       % 将训练集输入数据平铺成4维数组
P_test  = double(reshape(P_test , f_, 1, 1, N));       % 将测试集输入数据平铺成4维数组

t_train = t_train';  % 转置训练集输出数据,使其成为行向量
t_test  = t_test';   % 转置测试集输出数据,使其成为行向量
  • reshape:将训练集和测试集的输入数据转换为LSTM网络所需的4维格式。
  • P_train:训练集输入数据,格式为[特征数, 序列长度, 1, 样本数]。
  • P_test:测试集输入数据,格式为[特征数, 序列长度, 1, 样本数]。
  • t_train:转置训练集输出数据,使其成为行向量。
  • t_test:转置测试集输出数据,使其成为行向量。
9. 数据格式转换
for i = 1:M
    p_train{i, 1} = P_train(:, :, 1, i);   % 将训练集输入数据转换为cell数组,每个cell对应一个样本
end

for i = 1:N
    p_test{i, 1}  = P_test(:, :, 1, i);    % 将测试集输入数据转换为cell数组,每个cell对应一个样本
end
  • 循环转换数据格式
    • 将训练集和测试集的输入数据转换为cell数组格式,每个cell对应一个样本,适应trainNetwork函数的输入要求。
    • p_train:训练集输入数据的cell数组。
    • p_test:测试集输入数据的cell数组。
10. 创建模型
layers = [
    sequenceInputLayer(f_)              % 建立输入层,输入特征维度为f_
    
    lstmLayer(10, 'OutputMode', 'last') % 添加LSTM层,隐藏单元数为10,输出模式为“last”表示只输出最后一个时间步的结果
    reluLayer                           % 添加ReLU激活层,增加网络的非线性表达能力
    
    fullyConnectedLayer(1)              % 添加全连接层,输出维度为1,适用于单步预测的回归任务
    regressionLayer];                   % 添加回归层,用于计算预测误差
% 该网络结构包含一个输入层,一个LSTM层,一个ReLU激活层,一个全连接层和一个回归层
  • sequenceInputLayer:定义输入层,输入特征维度为f_。
  • lstmLayer:添加一个LSTM层,隐藏单元数为10,输出模式为“last”表示只输出最后一个时间步的结果。
  • reluLayer:添加一个ReLU激活层,引入非线性因素,提升模型的表达能力。
  • fullyConnectedLayer:添加一个全连接层,输出维度为1,适用于单步预测的回归任务。
  • regressionLayer:添加一个回归层,用于计算预测误差,适用于回归任务。
11. 参数设置
options = trainingOptions('adam', ...                 % 优化算法选择Adam
    'MaxEpochs', 300, ...                             % 设置最大训练次数为300
    'GradientThreshold', 1, ...                       % 设置梯度阈值为1,防止梯度爆炸
    'InitialLearnRate', 5e-3, ...                     % 设置初始学习率为0.005
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整策略为分段调整
    'LearnRateDropPeriod', 250, ...                   % 每250次训练后调整学习率
    'LearnRateDropFactor',0.1, ...                    % 学习率下降因子为0.1
    'L2Regularization', 1e-4, ...                     % 设置L2正则化参数为1e-4,防止过拟合
    'ExecutionEnvironment', 'auto',...                % 自动选择训练环境(CPU或GPU)
    'Verbose', false, ...                             % 关闭详细训练信息显示
    'Plots', 'training-progress');                    % 显示训练过程的进度图
  • trainingOptions:配置训练选项,选择优化算法、学习率策略、正则化等参数。
  • ‘adam’:选择Adam优化算法,适用于大规模数据和高效训练。
  • ‘MaxEpochs’, 300:设置最大训练次数为300。
  • ‘GradientThreshold’, 1:设置梯度阈值为1,防止梯度爆炸。
  • ‘InitialLearnRate’, 5e-3:设置初始学习率为0.005,控制权重更新的步长大小。
  • ‘LearnRateSchedule’, ‘piecewise’:学习率调整策略为分段调整。
  • ‘LearnRateDropPeriod’, 250:每250次训练后调整学习率。
  • ‘LearnRateDropFactor’,0.1:学习率下降因子为0.1,表示学习率每次下降到原来的10%。
  • ‘L2Regularization’, 1e-4:设置L2正则化参数为1e-4,防止过拟合。
  • ‘ExecutionEnvironment’, ‘auto’:自动选择训练环境(CPU或GPU),提高训练效率。
  • ‘Verbose’, false:关闭详细训练信息显示,避免命令行过于冗杂。
  • ‘Plots’, ‘training-progress’:显示训练过程的进度图,实时监控训练情况。
12. 训练模型
net = trainNetwork(p_train, t_train, layers, options); % 使用训练集数据训练LSTM神经网络
  • trainNetwork:使用训练集数据p_traint_train,按照定义的网络结构layers和训练选项options训练LSTM神经网络。
  • net:训练好的LSTM神经网络模型,包含优化后的权重和偏置参数。
13. 仿真预测
t_sim1 = predict(net, p_train);   % 使用训练集数据进行仿真预测,得到训练集预测结果
t_sim2 = predict(net, p_test );    % 使用测试集数据进行仿真预测,得到测试集预测结果
  • predict:使用训练好的LSTM神经网络对输入数据进行预测。
  • t_sim1:训练集的预测结果。
  • t_sim2:测试集的预测结果。
14. 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);  % 将训练集预测结果反归一化,恢复到原始尺度
T_sim2 = mapminmax('reverse', t_sim2, ps_output);  % 将测试集预测结果反归一化,恢复到原始尺度
  • mapminmax(‘reverse’, …):使用mapminmax函数将预测结果反归一化,恢复到原始数据的尺度。
  • T_sim1:训练集预测结果,恢复到原始尺度。
  • T_sim2:测试集预测结果,恢复到原始尺度。
15. 均方根误差(RMSE)
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);  % 计算训练集的均方根误差(RMSE)
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);  % 计算测试集的均方根误差(RMSE)
  • RMSE:均方根误差,衡量模型预测值与真实值之间的平均差异。
  • error1
    • 训练集的RMSE,计算公式为:
      [
      RMSE = \sqrt{\frac{1}{M} \sum_{i=1}^{M} (T_{\text{sim1}} - T_{\text{train}})^2}
      ]
  • error2
    • 测试集的RMSE,计算公式为:
      [
      RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (T_{\text{sim2}} - T_{\text{test}})^2}
      ]
16. 查看网络结构
analyzeNetwork(net) % 可视化和分析LSTM网络的结构和参数
  • analyzeNetwork:可视化和分析训练好的LSTM网络结构和参数,包括层次结构、连接权重等,帮助用户理解和优化网络。
17. 绘图
绘制训练集预测结果对比图
figure
plot(1:M, T_train, 'r-', 1:M, T_sim1, 'b-', 'LineWidth', 1) % 绘制训练集真实值与预测值的对比曲线,红色实线为真实值,蓝色实线为预测值
legend('真实值', '预测值')                                        % 添加图例,区分真实值和预测值
xlabel('预测样本')                                                % 设置X轴标签为“预测样本”
ylabel('预测结果')                                                % 设置Y轴标签为“预测结果”
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};      % 创建标题字符串,包括RMSE值
title(string)                                                    % 添加图形标题
xlim([1, M])                                                     % 设置X轴显示范围为[1, M]
grid                                                             % 显示网格,提升图形的可读性
  • figure:创建新的图形窗口。
  • plot(1:M, T_train, ‘r-’, 1:M, T_sim1, ‘b-’, ‘LineWidth’, 1)
    • 绘制训练集真实值T_train与预测值t_sim1的对比曲线,红色实线表示真实值,蓝色实线表示预测值。
  • legend(‘真实值’, ‘预测值’)
    • 添加图例,区分真实值和预测值。
  • xlabel(‘预测样本’)ylabel(‘预测结果’)
    • 设置X轴和Y轴的标签为“预测样本”和“预测结果”。
  • string = {‘训练集预测结果对比’; [‘RMSE=’ num2str(error1)]};
    • 创建标题字符串,包括RMSE值。
  • title(string)
    • 添加图形标题。
  • xlim([1, M])
    • 设置X轴的显示范围为[1, M],其中M为训练集样本数。
  • grid
    • 显示网格,提升图形的可读性。
绘制测试集预测结果对比图
figure
plot(1:N, T_test, 'r-', 1:N, T_sim2, 'b-', 'LineWidth', 1)   % 绘制测试集真实值与预测值的对比曲线,红色实线为真实值,蓝色实线为预测值
legend('真实值', '预测值')                                        % 添加图例,区分真实值和预测值
xlabel('预测样本')                                                % 设置X轴标签为“预测样本”
ylabel('预测结果')                                                % 设置Y轴标签为“预测结果”
string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};       % 创建标题字符串,包括RMSE值
title(string)                                                    % 添加图形标题
xlim([1, N])                                                     % 设置X轴显示范围为[1, N]
grid                                                             % 显示网格,提升图形的可读性
  • figure:创建新的图形窗口。
  • plot(1:N, T_test, ‘r-’, 1:N, T_sim2, ‘b-’, ‘LineWidth’, 1)
    • 绘制测试集真实值T_test与预测值t_sim2的对比曲线,红色实线表示真实值,蓝色实线表示预测值。
  • legend(‘真实值’, ‘预测值’)
    • 添加图例,区分真实值和预测值。
  • xlabel(‘预测样本’)ylabel(‘预测结果’)
    • 设置X轴和Y轴的标签为“预测样本”和“预测结果”。
  • string = {‘测试集预测结果对比’; [‘RMSE=’ num2str(error2)]};
    • 创建标题字符串,包括RMSE值。
  • title(string)
    • 添加图形标题。
  • xlim([1, N])
    • 设置X轴的显示范围为[1, N],其中N为测试集样本数。
  • grid
    • 显示网格,提升图形的可读性。
18. 相关指标计算
% 决定系数(R²)
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;  % 计算训练集的决定系数R²
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;    % 计算测试集的决定系数R²

disp(['训练集数据的R2为:', num2str(R1)])  % 显示训练集的R²
disp(['测试集数据的R2为:', num2str(R2)])  % 显示测试集的R²

% 平均绝对误差(MAE)
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;  % 计算训练集的平均绝对误差MAE
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;  % 计算测试集的平均绝对误差MAE

disp(['训练集数据的MAE为:', num2str(mae1)])  % 显示训练集的MAE
disp(['测试集数据的MAE为:', num2str(mae2)])  % 显示测试集的MAE

% 平均偏差误差(MBE)
mbe1 = sum(T_sim1' - T_train) ./ M ;  % 计算训练集的平均偏差误差MBE
mbe2 = sum(T_sim2' - T_test ) ./ N ;  % 计算测试集的平均偏差误差MBE

disp(['训练集数据的MBE为:', num2str(mbe1)])  % 显示训练集的MBE
disp(['测试集数据的MBE为:', num2str(mbe2)])  % 显示测试集的MBE

% 平均绝对百分比误差(MAPE)
mape1 = sum(abs((T_sim1' - T_train)./T_train)) ./ M ;  % 计算训练集的平均绝对百分比误差MAPE
mape2 = sum(abs((T_sim2' - T_test )./T_test )) ./ N ;  % 计算测试集的平均绝对百分比误差MAPE

disp(['训练集数据的MAPE为:', num2str(mape1)])  % 显示训练集的MAPE
disp(['测试集数据的MAPE为:', num2str(mape2)])  % 显示测试集的MAPE

% 均方根误差(RMSE)
disp(['训练集数据的RMSE为:', num2str(error1)])  % 显示训练集的RMSE
disp(['测试集数据的RMSE为:', num2str(error2)])  % 显示测试集的RMSE
  • 决定系数(R²)

    • R1:训练集的决定系数R²,衡量模型对训练数据的拟合程度。值越接近1,表示模型对数据的解释能力越强。
    • R2:测试集的决定系数R²,衡量模型对测试数据的泛化能力。值越接近1,表示模型在未见数据上的表现越好。
    • disp([‘训练集数据的R2为:’, num2str(R1)])
      • 显示训练集的R²值。
    • disp([‘测试集数据的R2为:’, num2str(R2)])
      • 显示测试集的R²值。
  • 平均绝对误差(MAE)

    • mae1:训练集的平均绝对误差MAE,表示预测值与真实值之间的平均绝对差异。值越小,表示模型性能越好。
    • mae2:测试集的平均绝对误差MAE,表示预测值与真实值之间的平均绝对差异。值越小,表示模型性能越好。
    • disp([‘训练集数据的MAE为:’, num2str(mae1)])
      • 显示训练集的MAE值。
    • disp([‘测试集数据的MAE为:’, num2str(mae2)])
      • 显示测试集的MAE值。
  • 平均偏差误差(MBE)

    • mbe1:训练集的平均偏差误差MBE,衡量模型是否存在系统性偏差。正值表示模型倾向于高估,负值表示模型倾向于低估。
    • mbe2:测试集的平均偏差误差MBE,衡量模型是否存在系统性偏差。正值表示模型倾向于高估,负值表示模型倾向于低估。
    • disp([‘训练集数据的MBE为:’, num2str(mbe1)])
      • 显示训练集的MBE值。
    • disp([‘测试集数据的MBE为:’, num2str(mbe2)])
      • 显示测试集的MBE值。
  • 平均绝对百分比误差(MAPE)

    • mape1:训练集的平均绝对百分比误差MAPE,表示预测值与真实值之间的平均绝对百分比差异。适用于评估相对误差。
    • mape2:测试集的平均绝对百分比误差MAPE,表示预测值与真实值之间的平均绝对百分比差异。适用于评估相对误差。
    • disp([‘训练集数据的MAPE为:’, num2str(mape1)])
      • 显示训练集的MAPE值。
    • disp([‘测试集数据的MAPE为:’, num2str(mape2)])
      • 显示测试集的MAPE值。
  • 均方根误差(RMSE)

    • error1:训练集的RMSE,显示训练集的均方根误差。
    • error2:测试集的RMSE,显示测试集的均方根误差。
    • disp([‘训练集数据的RMSE为:’, num2str(error1)])
      • 显示训练集的RMSE值。
    • disp([‘测试集数据的RMSE为:’, num2str(error2)])
      • 显示测试集的RMSE值。
19. 绘制散点图
绘制训练集散点图
figure
scatter(T_train, T_sim1, sz, c)              % 绘制训练集真实值与预测值的散点图,蓝色散点表示预测结果
hold on                                       % 保持当前图形,允许在同一图形上绘制多条曲线
plot(xlim, ylim, '--k')                      % 绘制理想预测线(真实值等于预测值的对角线),使用黑色虚线表示
xlabel('训练集真实值');                        % 设置X轴标签为“训练集真实值”
ylabel('训练集预测值');                        % 设置Y轴标签为“训练集预测值”
xlim([min(T_train) max(T_train)])             % 设置X轴的显示范围为[最小真实值, 最大真实值]
ylim([min(T_sim1) max(T_sim1)])               % 设置Y轴的显示范围为[最小预测值, 最大预测值]
title('训练集预测值 vs. 训练集真实值')            % 设置图形的标题为“训练集预测值 vs. 训练集真实值”
  • figure:创建新的图形窗口。
  • scatter(T_train, T_sim1, sz, c)
    • 使用scatter函数绘制训练集真实值T_train与预测值t_sim1的散点图,蓝色散点表示预测结果。
  • hold on
    • 保持当前图形,允许在同一图形上绘制多条曲线。
  • plot(xlim, ylim, ‘–k’)
    • 绘制理想预测线,即真实值等于预测值的对角线,使用黑色虚线表示。
  • xlabel(‘训练集真实值’)ylabel(‘训练集预测值’)
    • 设置X轴和Y轴的标签为“训练集真实值”和“训练集预测值”。
  • xlim([min(T_train) max(T_train)])ylim([min(T_sim1) max(T_sim1)])
    • 设置X轴和Y轴的显示范围为数据的最小值和最大值。
  • title(‘训练集预测值 vs. 训练集真实值’)
    • 设置图形的标题为“训练集预测值 vs. 训练集真实值”。
绘制测试集散点图
figure
scatter(T_test, T_sim2, sz, c)               % 绘制测试集真实值与预测值的散点图,蓝色散点表示预测结果
hold on                                       % 保持当前图形,允许在同一图形上绘制多条曲线
plot(xlim, ylim, '--k')                      % 绘制理想预测线(真实值等于预测值的对角线),使用黑色虚线表示
xlabel('测试集真实值');                         % 设置X轴标签为“测试集真实值”
ylabel('测试集预测值');                         % 设置Y轴标签为“测试集预测值”
xlim([min(T_test) max(T_test)])                % 设置X轴的显示范围为[最小真实值, 最大真实值]
ylim([min(T_sim2) max(T_sim2)])                % 设置Y轴的显示范围为[最小预测值, 最大预测值]
title('测试集预测值 vs. 测试集真实值')             % 设置图形的标题为“测试集预测值 vs. 测试集真实值”
  • figure:创建新的图形窗口。
  • scatter(T_test, T_sim2, sz, c)
    • 使用scatter函数绘制测试集真实值T_test与预测值t_sim2的散点图,蓝色散点表示预测结果。
  • hold on
    • 保持当前图形,允许在同一图形上绘制多条曲线。
  • plot(xlim, ylim, ‘–k’)
    • 绘制理想预测线,即真实值等于预测值的对角线,使用黑色虚线表示。
  • xlabel(‘测试集真实值’)ylabel(‘测试集预测值’)
    • 设置X轴和Y轴的标签为“测试集真实值”和“测试集预测值”。
  • xlim([min(T_test) max(T_test)])ylim([min(T_sim2) max(T_sim2)])
    • 设置X轴和Y轴的显示范围为数据的最小值和最大值。
  • title(‘测试集预测值 vs. 测试集真实值’)
    • 设置图形的标题为“测试集预测值 vs. 测试集真实值”。

代码使用注意事项

  1. 数据集格式

    • 时间序列数据:确保数据集.xlsx中的数据为单列时间序列数据,表示时间序列的连续值。
    • 数据顺序:时间序列数据应按照时间顺序排列,确保数据的时间依赖关系。
  2. 参数调整

    • 延时步长(kim):通过kim = 15设定,表示使用15个历史数据点作为输入特征。根据时间序列的特性和周期性调整延时步长,步长过大可能导致模型复杂度增加,步长过小可能导致模型捕捉不到足够的时间依赖信息。
    • 预测步长(zim):通过zim = 1设定,表示预测当前点之后的1个时间点的值。根据实际需求调整预测步长,适用于单步预测或多步预测。
    • 训练集比例(num_size):通过num_size = 0.7设定,表示70%的数据用于训练,30%的数据用于测试。根据数据集大小和分布调整训练集比例,确保训练集和测试集具有代表性。
    • LSTM隐藏单元数(lstmLayer(10, …)):通过lstmLayer(10, ...)设定LSTM层的隐藏单元数为10。根据数据的复杂度和特征数量调整隐藏单元数,隐藏单元数过少可能导致欠拟合,隐藏单元数过多可能导致过拟合。
    • 训练选项(trainingOptions)
      • 最大训练次数(‘MaxEpochs’, 300):根据数据集的大小和模型复杂度调整最大训练次数,确保模型充分训练但避免过拟合。
      • 学习率(‘InitialLearnRate’, 5e-3):设置初始学习率,影响模型收敛速度和稳定性。
      • 学习率调整策略(‘LearnRateSchedule’, ‘piecewise’):选择适当的学习率调整策略,提升模型训练效果。
      • 学习率下降因子与周期(‘LearnRateDropFactor’,0.1; ‘LearnRateDropPeriod’, 250):设置学习率下降的频率和幅度,帮助模型在训练后期细化权重。
      • 正则化参数(‘L2Regularization’, 1e-4):设置正则化参数,防止模型过拟合。
  3. 环境要求

    • MATLAB版本:确保使用的MATLAB版本支持trainNetworksequenceInputLayerlstmLayer等深度学习相关函数。
    • 工具箱
      • Deep Learning Toolbox:支持使用LSTM神经网络相关函数,如trainNetworklstmLayersequenceInputLayer等。
  4. 性能优化

    • 数据预处理
      • 归一化:通过mapminmax函数对输入数据和目标变量进行归一化,提升模型训练速度和稳定性。
      • 降维:如果输入特征过多,可以考虑使用主成分分析(PCA)等降维方法,减少特征数量,提升模型训练效率和性能。
    • 模型参数优化
      • LSTM隐藏单元数:根据数据的复杂度和特征数量调整LSTM层的隐藏单元数,优化模型的特征提取能力和拟合能力。
      • 学习率调整:通过调整学习率和学习率调整策略,提升模型的收敛速度和稳定性。
      • 正则化参数调整:通过调整正则化参数,防止模型过拟合。
  5. 结果验证

    • 交叉验证:采用k折交叉验证方法评估模型的稳定性和泛化能力,避免因数据划分偶然性导致的性能波动。
    • 多次运行:由于LSTM模型对初始权重和训练过程敏感,建议多次运行模型,取平均性能指标,以获得更稳定的评估结果。
    • 模型对比:将LSTM时序预测模型与其他预测模型(如ARIMA、BP神经网络、ELM等)进行对比,评估不同模型在相同数据集上的表现差异。
  6. 性能指标理解

    • 决定系数(R²):衡量模型对数据的拟合程度,值越接近1表示模型解释变量变异的能力越强。
    • 平均绝对误差(MAE):表示预测值与真实值之间的平均绝对差异,值越小表示模型性能越好。
    • 平均偏差误差(MBE):表示预测值与真实值之间的平均差异,正值表示模型倾向于高估,负值表示模型倾向于低估。
    • 平均绝对百分比误差(MAPE):表示预测值与真实值之间的平均绝对百分比差异,适用于评估相对误差。
    • 均方根误差(RMSE):表示预测值与真实值之间的平方差的平均值的平方根,值越小表示模型性能越好。
  7. 模型分析与可视化

    • 网络结构分析:通过analyzeNetwork函数可视化和分析LSTM网络的结构和参数,了解网络的层次结构和连接权重。
    • 训练过程监控:通过training-progress图实时监控训练过程中的损失函数变化,了解模型的收敛情况。
    • 预测结果对比图:通过绘制训练集和测试集的真实值与预测值对比图,直观展示模型的预测效果。
    • 散点图:通过绘制真实值与预测值的散点图,评估模型的拟合能力和误差分布。
    • 误差分析:通过计算并分析RMSE、R²、MAE、MBE、MAPE等指标,全面评估模型的性能和预测准确性。
  8. 代码适应性

    • 模型参数调整:根据实际数据和任务需求,调整LSTM模型的参数(如隐藏单元数、学习率等),优化模型性能。
    • 数据格式匹配:确保输入数据的格式与LSTM模型的要求一致。输入数据应为cell数组,每个cell包含一个样本的时间序列数据。
    • 特征处理:如果输入数据包含类别特征,需先进行数值编码转换,确保所有特征均为数值型数据。

通过理解和应用上述LSTM时序预测模型,用户可以有效地处理各种时间序列预测任务,充分发挥LSTM在捕捉长期依赖和处理复杂时间序列数据方面的优势,提升模型的预测准确性和鲁棒性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值