LSTM时序预测详细介绍
源码
什么是LSTM时序预测?
LSTM时序预测(Long Short-Term Memory Time Series Prediction)是一种基于**长短期记忆网络(Long Short-Term Memory, LSTM)**的时间序列预测方法。LSTM是一种特殊类型的循环神经网络(Recurrent Neural Network, RNN),专门设计用于解决传统RNN在处理长序列数据时的梯度消失和梯度爆炸问题。LSTM通过引入门控机制(输入门、遗忘门和输出门)能够有效地捕捉和记忆时间序列中的长期依赖关系,从而在诸如金融市场预测、能源负荷预测、气象预测等领域展现出优异的性能。
LSTM的组成部分
-
输入层(Input Layer):
- 接收时间序列数据的特征向量,通常是多维的时间步长数据。
-
LSTM层(LSTM Layer):
- 核心部分,包含多个LSTM单元,通过门控机制控制信息的流动和记忆的更新。
- 输入门(Input Gate):控制当前输入信息的重要性。
- 遗忘门(Forget Gate):决定保留多少之前的记忆。
- 输出门(Output Gate):控制输出的信息量。
-
激活层(Activation Layer):
- 通常使用ReLU(Rectified Linear Unit)等激活函数,引入非线性因素,提升模型的表达能力。
-
全连接层(Fully Connected Layer):
- 将LSTM层的输出映射到目标变量空间,实现最终的预测。
-
回归层(Regression Layer):
- 用于回归任务,计算预测值与真实值之间的误差。
LSTM时序预测的工作原理
LSTM时序预测通过以下步骤实现时间序列的预测任务:
-
数据准备与预处理:
- 数据收集与整理:收集时间序列数据,处理缺失值和异常值,确保数据质量。
- 数据构造:利用延迟步长(lag)将时间序列数据转换为监督学习问题的输入输出对,构建特征矩阵和目标向量。
- 数据归一化:对输入数据和目标变量进行归一化或标准化处理,以加快训练速度和提高模型稳定性。
-
构建LSTM神经网络:
- 初始化网络:定义LSTM神经网络的结构,包括输入层、LSTM层、激活层、全连接层和回归层的节点数。
- 设置训练参数:设定训练参数,如优化算法(例如Adam)、最大训练次数、学习率、梯度阈值和正则化参数等。
-
模型训练与优化:
- 使用训练集数据训练LSTM神经网络,通过反向传播算法调整网络权重和偏置,最小化预测误差。
- 训练选项:配置训练选项,如学习率调整策略、梯度裁剪、正则化等,以提升模型的训练效果和泛化能力。
-
模型预测与评估:
- 使用训练好的LSTM模型对训练集和测试集数据进行预测,得到预测结果。
- 计算预测误差和其他性能指标(如RMSE、R²、MAE等),评估模型的预测准确性和泛化能力。
-
结果分析与可视化:
- 预测结果对比图:绘制真实值与预测值的对比图,直观展示模型的预测效果。
- 散点图:绘制真实值与预测值的散点图,评估模型的拟合能力。
- 适应度变化曲线:展示训练过程中损失函数的变化趋势,了解模型的收敛情况。
- 误差分析:分析预测误差的分布和趋势,了解模型的优缺点。
LSTM时序预测的优势
-
捕捉长期依赖:
- LSTM通过门控机制能够有效地捕捉和记忆时间序列中的长期依赖关系,提升模型对复杂时间序列的建模能力。
-
抗梯度消失与爆炸:
- 相较于传统RNN,LSTM通过结构上的设计解决了梯度消失和梯度爆炸的问题,确保模型在训练长序列时的稳定性。
-
灵活性强:
- LSTM网络可以根据数据的特性调整层数和节点数,适应不同复杂度的时间序列预测任务。
-
广泛应用领域:
- LSTM时序预测在金融、能源、气象、制造、医疗等多个领域都有广泛的应用,具有很高的实用价值。
LSTM时序预测的应用
LSTM时序预测广泛应用于各类需要高精度时间序列预测的领域,包括但不限于:
-
金融预测:
- 股市价格预测:预测股票市场的未来价格走势,辅助投资决策。
- 经济指标预测:预测GDP、通胀率等宏观经济指标,为政策制定提供参考。
-
能源与电力:
- 电力负荷预测:预测未来电力需求,优化电网调度和资源分配。
- 能源消耗预测:预测能源消耗趋势,辅助能源管理和规划。
-
工程与制造:
- 设备故障预测:预测设备的潜在故障,进行预防性维护,减少停机时间。
- 生产过程控制:拟合和预测制造过程中关键参数,优化生产流程,确保产品质量。
-
环境科学:
- 气象预测:预测未来的气温、降水量等气象指标,辅助天气预报。
- 污染物浓度预测:预测空气或水体中的污染物浓度,进行环境监测和管理。
-
医疗健康:
- 疾病风险预测:预测个体患某种疾病的风险,辅助医疗决策和健康管理。
- 医疗费用预测:预测患者的医疗费用支出,优化医疗资源分配。
-
市场营销:
- 销售预测:预测产品的未来销售量,优化库存管理和市场策略。
- 客户需求预测:预测客户的购买行为和需求变化,制定精准的营销策略。
如何使用LSTM时序预测
使用LSTM时序预测模型主要包括以下步骤:
-
准备数据集:
- 数据收集与整理:确保时间序列数据的完整性和准确性,处理缺失值和异常值。
- 数据构造:利用延迟步长(lag)将时间序列数据转换为监督学习问题的输入输出对,构建特征矩阵和目标向量。
- 数据归一化:对输入数据和目标变量进行归一化或标准化处理,以加快训练速度和提高模型稳定性。
-
构建LSTM神经网络:
- 初始化网络:定义LSTM神经网络的结构,包括输入层、LSTM层、激活层、全连接层和回归层的节点数。
- 设置训练参数:设定训练参数,如优化算法(例如Adam)、最大训练次数、学习率、梯度阈值和正则化参数等。
-
模型训练与优化:
- 使用训练集数据训练LSTM神经网络,通过反向传播算法调整网络权重和偏置,最小化预测误差。
- 训练选项:配置训练选项,如学习率调整策略、梯度裁剪、正则化等,以提升模型的训练效果和泛化能力。
-
模型预测与评估:
- 使用训练好的LSTM模型对训练集和测试集数据进行预测,得到预测结果。
- 计算预测误差和其他性能指标(如RMSE、R²、MAE等),评估模型的预测准确性和泛化能力。
-
模型评估与优化:
- 计算性能指标:计算RMSE、R²、MAE、MBE、MAPE等指标,全面评估模型的性能。
- 优化模型参数:根据性能指标调整LSTM网络的参数(如隐藏层神经元数量、学习率等),进一步优化模型性能。
-
结果分析与可视化:
- 预测结果对比图:绘制训练集和测试集的真实值与预测值对比图,直观展示模型的预测效果。
- 散点图:绘制真实值与预测值的散点图,评估模型的拟合能力。
- 适应度变化曲线:绘制训练过程中损失函数的变化曲线,了解模型的收敛情况。
- 误差分析:分析RMSE、R²、MAE、MBE、MAPE等指标,
全面评估模型的性能和预测准确性。
通过理解和应用上述LSTM时序预测模型,用户可以有效地处理各种时间序列预测任务,充分发挥LSTM在捕捉长期依赖和处理复杂时间序列数据方面的优势,提升模型的预测准确性和鲁棒性。
代码简介
该MATLAB代码实现了基于**长短期记忆网络(LSTM)**的时间序列预测算法,简称“LSTM时序预测”。主要流程如下:
-
数据预处理:
- 导入时间序列数据,并构造监督学习的数据集。
- 将数据集划分为训练集和测试集。
- 对输入数据和目标变量进行归一化处理。
- 将数据平铺成适合LSTM网络的格式。
-
LSTM模型构建与训练:
- 定义LSTM神经网络的结构,包括输入层、LSTM层、激活层、全连接层和回归层。
- 设置训练参数,如优化算法(Adam)、最大训练次数、学习率等。
- 使用训练集数据训练LSTM神经网络,优化模型参数。
-
结果分析与可视化:
- 使用训练好的LSTM模型对训练集和测试集进行预测。
- 计算并显示相关回归性能指标(RMSE、R²、MAE、MBE、MAPE)。
- 绘制训练集和测试集的真实值与预测值对比图、适应度变化曲线以及散点图,直观展示回归效果和模型性能。
以下是包含详细中文注释的LSTM时序预测MATLAB代码。
MATLAB代码(添加详细中文注释)
%% 清空环境变量
warning off % 关闭所有警告信息,避免运行过程中显示不必要的警告
close all % 关闭所有打开的图形窗口,确保绘图环境的干净
clear % 清除工作区中的所有变量,确保没有残留变量影响结果
clc % 清空命令行窗口,提升可读性
%% 导入数据(时间序列的单列数据)
result = xlsread('数据集.xlsx'); % 从Excel文件中读取时间序列数据,假设数据为单列
%% 数据分析
num_samples = length(result); % 计算时间序列数据的样本数量(数据点数)
kim = 15; % 设定延时步长(lag),即使用15个历史数据点作为输入特征
zim = 1; % 设定预测步长(forecast step),即预测当前点之后的1个时间点
%% 划分数据集
for i = 1:num_samples - kim - zim + 1
res(i, :) = [reshape(result(i:i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end
% 循环遍历时间序列数据,构建输入特征和对应的目标变量
% 每一行res包含15个历史数据点和1个未来数据点
%% 数据集分析
outdim = 1; % 设定数据集的最后一列为输出(目标变量)
num_size = 0.7; % 设定训练集占数据集的比例(70%训练集,30%测试集)
num_train_s = round(num_size * num_samples); % 计算训练集样本个数,通过四舍五入确定
f_ = size(res, 2) - outdim; % 计算输入特征的维度,即总列数减去输出维度
%% 划分训练集和测试集
P_train = res(1:num_train_s, 1:f_)'; % 训练集输入特征,转置使每列为一个样本 (f_ × M)
T_train = res(1:num_train_s, f_ + 1:end)'; % 训练集输出目标变量,转置使每列为一个样本 (outdim × M)
M = size(P_train, 2); % 获取训练集的样本数量
P_test = res(num_train_s + 1:end, 1:f_)'; % 测试集输入特征,转置使每列为一个样本 (f_ × N)
T_test = res(num_train_s + 1:end, f_ + 1:end)';% 测试集输出目标变量,转置使每列为一个样本 (outdim × N)
N = size(P_test, 2); % 获取测试集的样本数量
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1); % 对训练集输入特征进行归一化,范围[0,1]
P_test = mapminmax('apply', P_test, ps_input); % 使用训练集的归一化参数对测试集输入特征进行归一化
[t_train, ps_output] = mapminmax(T_train, 0, 1); % 对训练集输出目标变量进行归一化,范围[0,1]
t_test = mapminmax('apply', T_test, ps_output); % 使用训练集的归一化参数对测试集输出目标变量进行归一化
%% 数据平铺
% 将数据平铺成4维数据,适应MATLAB的LSTM网络输入格式
% 输入格式:[特征数, 序列长度, 1, 样本数]
P_train = double(reshape(P_train, f_, 1, 1, M)); % 将训练集输入数据平铺成4维数组
P_test = double(reshape(P_test , f_, 1, 1, N)); % 将测试集输入数据平铺成4维数组
t_train = t_train'; % 转置训练集输出数据,使其成为行向量
t_test = t_test'; % 转置测试集输出数据,使其成为行向量
%% 数据格式转换
for i = 1:M
p_train{i, 1} = P_train(:, :, 1, i); % 将训练集输入数据转换为cell数组,每个cell对应一个样本
end
for i = 1:N
p_test{i, 1} = P_test(:, :, 1, i); % 将测试集输入数据转换为cell数组,每个cell对应一个样本
end
%% 创建模型
layers = [
sequenceInputLayer(f_) % 建立输入层,输入特征维度为f_
lstmLayer(10, 'OutputMode', 'last') % 添加LSTM层,隐藏单元数为10,输出模式为“last”表示只输出最后一个时间步的结果
reluLayer % 添加ReLU激活层,增加网络的非线性表达能力
fullyConnectedLayer(1) % 添加全连接层,输出维度为1,适用于单步预测的回归任务
regressionLayer]; % 添加回归层,用于计算预测误差
% 该网络结构包含一个LSTM层,一个ReLU激活层,一个全连接层和一个回归层
%% 参数设置
% 设置训练选项,使用Adam优化器
options = trainingOptions('adam', ... % 优化算法Adam
'MaxEpochs', 300, ... % 最大训练次数为300
'GradientThreshold', 1, ... % 设置梯度阈值,防止梯度爆炸
'InitialLearnRate', 5e-3, ... % 初始学习率为0.005
'LearnRateSchedule', 'piecewise', ... % 学习率调整策略为分段调整
'LearnRateDropPeriod', 250, ... % 每250次训练后调整学习率
'LearnRateDropFactor',0.1, ... % 学习率下降因子为0.1
'L2Regularization', 1e-4, ... % L2正则化参数为1e-4,防止过拟合
'ExecutionEnvironment', 'auto',... % 自动选择训练环境(CPU或GPU)
'Verbose', false, ... % 关闭详细训练信息显示
'Plots', 'training-progress'); % 显示训练过程的进度图
%% 训练模型
net = trainNetwork(p_train, t_train, layers, options); % 使用训练集数据训练LSTM神经网络
%% 仿真预测
t_sim1 = predict(net, p_train); % 使用训练集数据进行仿真预测,得到训练集预测结果
t_sim2 = predict(net, p_test ); % 使用测试集数据进行仿真预测,得到测试集预测结果
%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output); % 将训练集预测结果反归一化,恢复到原始尺度
T_sim2 = mapminmax('reverse', t_sim2, ps_output); % 将测试集预测结果反归一化,恢复到原始尺度
%% 均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M); % 计算训练集的均方根误差(RMSE)
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N); % 计算测试集的均方根误差(RMSE)
%% 查看网络结构
analyzeNetwork(net) % 可视化和分析LSTM网络的结构和参数
%% 绘图
% 绘制训练集预测结果对比图
figure
plot(1:M, T_train, 'r-', 1:M, T_sim1, 'b-', 'LineWidth', 1) % 绘制训练集真实值与预测值的对比曲线,红色实线为真实值,蓝色实线为预测值
legend('真实值', '预测值') % 添加图例,区分真实值和预测值
xlabel('预测样本') % 设置X轴标签为“预测样本”
ylabel('预测结果') % 设置Y轴标签为“预测结果”
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]}; % 创建标题字符串,包括RMSE值
title(string) % 添加图形标题
xlim([1, M]) % 设置X轴显示范围为[1, M]
grid % 显示网格,提升图形的可读性
% 绘制测试集预测结果对比图
figure
plot(1:N, T_test, 'r-', 1:N, T_sim2, 'b-', 'LineWidth', 1) % 绘制测试集真实值与预测值的对比曲线,红色实线为真实值,蓝色实线为预测值
legend('真实值', '预测值') % 添加图例,区分真实值和预测值
xlabel('预测样本') % 设置X轴标签为“预测样本”
ylabel('预测结果') % 设置Y轴标签为“预测结果”
string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]}; % 创建标题字符串,包括RMSE值
title(string) % 添加图形标题
xlim([1, N]) % 设置X轴显示范围为[1, N]
grid % 显示网格,提升图形的可读性
%% 相关指标计算
% 决定系数(R²)
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2; % 计算训练集的决定系数R²
R2 = 1 - norm(T_test - T_sim2')^2 / norm(T_test - mean(T_test ))^2; % 计算测试集的决定系数R²
disp(['训练集数据的R2为:', num2str(R1)]) % 显示训练集的R²
disp(['测试集数据的R2为:', num2str(R2)]) % 显示测试集的R²
% 平均绝对误差(MAE)
mae1 = sum(abs(T_sim1' - T_train)) ./ M ; % 计算训练集的平均绝对误差MAE
mae2 = sum(abs(T_sim2' - T_test )) ./ N ; % 计算测试集的平均绝对误差MAE
disp(['训练集数据的MAE为:', num2str(mae1)]) % 显示训练集的MAE
disp(['测试集数据的MAE为:', num2str(mae2)]) % 显示测试集的MAE
% 平均偏差误差(MBE)
mbe1 = sum(T_sim1' - T_train) ./ M ; % 计算训练集的平均偏差误差MBE
mbe2 = sum(T_sim2' - T_test ) ./ N ; % 计算测试集的平均偏差误差MBE
disp(['训练集数据的MBE为:', num2str(mbe1)]) % 显示训练集的MBE
disp(['测试集数据的MBE为:', num2str(mbe2)]) % 显示测试集的MBE
% 平均绝对百分比误差(MAPE)
mape1 = sum(abs((T_sim1' - T_train)./T_train)) ./ M ; % 计算训练集的平均绝对百分比误差MAPE
mape2 = sum(abs((T_sim2' - T_test )./T_test )) ./ N ; % 计算测试集的平均绝对百分比误差MAPE
disp(['训练集数据的MAPE为:', num2str(mape1)]) % 显示训练集的MAPE
disp(['测试集数据的MAPE为:', num2str(mape2)]) % 显示测试集的MAPE
% 均方根误差(RMSE)
disp(['训练集数据的RMSE为:', num2str(error1)]) % 显示训练集的RMSE
disp(['测试集数据的RMSE为:', num2str(error2)]) % 显示测试集的RMSE
%% 绘制散点图
sz = 25; % 设置散点的大小为25
c = 'b'; % 设置散点的颜色为蓝色
% 绘制训练集散点图
figure
scatter(T_train, T_sim1, sz, c) % 绘制训练集真实值与预测值的散点图,蓝色散点表示预测结果
hold on % 保持当前图形,允许在同一图形上绘制多条曲线
plot(xlim, ylim, '--k') % 绘制理想预测线(真实值等于预测值的对角线),使用黑色虚线表示
xlabel('训练集真实值'); % 设置X轴标签为“训练集真实值”
ylabel('训练集预测值'); % 设置Y轴标签为“训练集预测值”
xlim([min(T_train) max(T_train)]) % 设置X轴的显示范围为[最小真实值, 最大真实值]
ylim([min(T_sim1) max(T_sim1)]) % 设置Y轴的显示范围为[最小预测值, 最大预测值]
title('训练集预测值 vs. 训练集真实值') % 设置图形的标题为“训练集预测值 vs. 训练集真实值”
% 绘制测试集散点图
figure
scatter(T_test, T_sim2, sz, c) % 绘制测试集真实值与预测值的散点图,蓝色散点表示预测结果
hold on % 保持当前图形,允许在同一图形上绘制多条曲线
plot(xlim, ylim, '--k') % 绘制理想预测线(真实值等于预测值的对角线),使用黑色虚线表示
xlabel('测试集真实值'); % 设置X轴标签为“测试集真实值”
ylabel('测试集预测值'); % 设置Y轴标签为“测试集预测值”
xlim([min(T_test) max(T_test)]) % 设置X轴的显示范围为[最小真实值, 最大真实值]
ylim([min(T_sim2) max(T_sim2)]) % 设置Y轴的显示范围为[最小预测值, 最大预测值]
title('测试集预测值 vs. 测试集真实值') % 设置图形的标题为“测试集预测值 vs. 测试集真实值”
代码说明
1. 清空环境变量
warning off % 关闭所有警告信息,避免运行过程中显示不必要的警告
close all % 关闭所有打开的图形窗口,确保绘图环境的干净
clear % 清除工作区中的所有变量,确保没有残留变量影响结果
clc % 清空命令行窗口,提升可读性
- warning off:关闭MATLAB中的所有警告信息,避免在代码运行过程中显示不必要的警告。
- close all:关闭所有打开的图形窗口,避免之前的图形干扰当前的绘图。
- clear:清除工作区中的所有变量,确保代码运行环境的干净。
- clc:清空命令行窗口,提升可读性。
2. 导入数据
result = xlsread('数据集.xlsx'); % 从Excel文件中读取时间序列数据,假设数据为单列
- xlsread:从指定的Excel文件
数据集.xlsx
中读取时间序列数据。 - result:存储读取的时间序列数据,假设数据为单列,表示时间序列的连续值。
3. 数据分析
num_samples = length(result); % 计算时间序列数据的样本数量(数据点数)
kim = 15; % 设定延时步长(lag),即使用15个历史数据点作为输入特征
zim = 1; % 设定预测步长(forecast step),即预测当前点之后的1个时间点
- num_samples:计算时间序列数据的样本数量,即数据点的总数。
- kim:设定延时步长(lag),即每次使用15个连续的历史数据点作为输入特征,用于预测未来的值。
- zim:设定预测步长(forecast step),即预测当前点之后的1个时间点的值。
4. 划分数据集
for i = 1:num_samples - kim - zim + 1
res(i, :) = [reshape(result(i:i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end
- 循环构造数据集:
- 遍历时间序列数据,从第1个数据点到第
num_samples - kim - zim + 1
个数据点。 - reshape(result(i:i + kim - 1), 1, kim):将连续的
kim
个历史数据点转换为1行kim
列的向量,作为输入特征。 - result(i + kim + zim - 1):获取当前输入特征对应的目标变量,即第
kim + zim
个时间点的值。 - res(i, 😃:将输入特征和目标变量组合成一行,存储在结果矩阵
res
中。
- 遍历时间序列数据,从第1个数据点到第
5. 数据集分析
outdim = 1; % 设定数据集的最后一列为输出(目标变量)
num_size = 0.7; % 设定训练集占数据集的比例(70%训练集,30%测试集)
num_train_s = round(num_size * num_samples); % 计算训练集样本个数,通过四舍五入确定
f_ = size(res, 2) - outdim; % 计算输入特征的维度,即总列数减去输出维度
- outdim:设定数据集的最后一列为输出(目标变量)。
- num_size:设定训练集占数据集的比例为70%,剩余30%作为测试集。
- num_train_s:计算训练集的样本数量,通过
round
函数对训练集比例与总样本数的乘积进行四舍五入。 - f_:计算输入特征的维度,即数据集的总列数减去输出维度。
6. 划分训练集和测试集
P_train = res(1:num_train_s, 1:f_)'; % 训练集输入特征,转置使每列为一个样本 (f_ × M)
T_train = res(1:num_train_s, f_ + 1:end)'; % 训练集输出目标变量,转置使每列为一个样本 (outdim × M)
M = size(P_train, 2); % 获取训练集的样本数量
P_test = res(num_train_s + 1:end, 1:f_)'; % 测试集输入特征,转置使每列为一个样本 (f_ × N)
T_test = res(num_train_s + 1:end, f_ + 1:end)';% 测试集输出目标变量,转置使每列为一个样本 (outdim × N)
N = size(P_test, 2); % 获取测试集的样本数量
- P_train:提取前
num_train_s
个样本的输入特征,并进行转置,使每列为一个样本。 - T_train:提取前
num_train_s
个样本的输出(目标变量),并进行转置,使每列为一个样本。 - M:获取训练集的样本数量。
- P_test:提取剩余样本的输入特征,并进行转置,使每列为一个样本。
- T_test:提取剩余样本的输出(目标变量),并进行转置,使每列为一个样本。
- N:获取测试集的样本数量。
7. 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1); % 对训练集输入特征进行归一化,范围[0,1]
P_test = mapminmax('apply', P_test, ps_input); % 使用训练集的归一化参数对测试集输入特征进行归一化
[t_train, ps_output] = mapminmax(T_train, 0, 1); % 对训练集输出目标变量进行归一化,范围[0,1]
t_test = mapminmax('apply', T_test, ps_output); % 使用训练集的归一化参数对测试集输出目标变量进行归一化
- mapminmax:使用
mapminmax
函数将数据缩放到指定的范围内(这里为[0,1])。 - P_train:归一化后的训练集输入特征数据。
- ps_input:保存输入特征的归一化参数,以便对测试集数据进行相同的归一化处理。
- P_test:使用训练集的归一化参数对测试集输入特征数据进行归一化,确保训练集和测试集的数据尺度一致。
- t_train:归一化后的训练集输出目标变量数据。
- ps_output:保存输出目标变量的归一化参数,以便对测试集数据进行相同的归一化处理。
- t_test:使用训练集的归一化参数对测试集输出目标变量数据进行归一化。
8. 数据平铺
% 将数据平铺成4维数据,适应MATLAB的LSTM网络输入格式
% 输入格式:[特征数, 序列长度, 1, 样本数]
P_train = double(reshape(P_train, f_, 1, 1, M)); % 将训练集输入数据平铺成4维数组
P_test = double(reshape(P_test , f_, 1, 1, N)); % 将测试集输入数据平铺成4维数组
t_train = t_train'; % 转置训练集输出数据,使其成为行向量
t_test = t_test'; % 转置测试集输出数据,使其成为行向量
- reshape:将训练集和测试集的输入数据转换为LSTM网络所需的4维格式。
- P_train:训练集输入数据,格式为[特征数, 序列长度, 1, 样本数]。
- P_test:测试集输入数据,格式为[特征数, 序列长度, 1, 样本数]。
- t_train:转置训练集输出数据,使其成为行向量。
- t_test:转置测试集输出数据,使其成为行向量。
9. 数据格式转换
for i = 1:M
p_train{i, 1} = P_train(:, :, 1, i); % 将训练集输入数据转换为cell数组,每个cell对应一个样本
end
for i = 1:N
p_test{i, 1} = P_test(:, :, 1, i); % 将测试集输入数据转换为cell数组,每个cell对应一个样本
end
- 循环转换数据格式:
- 将训练集和测试集的输入数据转换为cell数组格式,每个cell对应一个样本,适应
trainNetwork
函数的输入要求。 - p_train:训练集输入数据的cell数组。
- p_test:测试集输入数据的cell数组。
- 将训练集和测试集的输入数据转换为cell数组格式,每个cell对应一个样本,适应
10. 创建模型
layers = [
sequenceInputLayer(f_) % 建立输入层,输入特征维度为f_
lstmLayer(10, 'OutputMode', 'last') % 添加LSTM层,隐藏单元数为10,输出模式为“last”表示只输出最后一个时间步的结果
reluLayer % 添加ReLU激活层,增加网络的非线性表达能力
fullyConnectedLayer(1) % 添加全连接层,输出维度为1,适用于单步预测的回归任务
regressionLayer]; % 添加回归层,用于计算预测误差
% 该网络结构包含一个输入层,一个LSTM层,一个ReLU激活层,一个全连接层和一个回归层
- sequenceInputLayer:定义输入层,输入特征维度为f_。
- lstmLayer:添加一个LSTM层,隐藏单元数为10,输出模式为“last”表示只输出最后一个时间步的结果。
- reluLayer:添加一个ReLU激活层,引入非线性因素,提升模型的表达能力。
- fullyConnectedLayer:添加一个全连接层,输出维度为1,适用于单步预测的回归任务。
- regressionLayer:添加一个回归层,用于计算预测误差,适用于回归任务。
11. 参数设置
options = trainingOptions('adam', ... % 优化算法选择Adam
'MaxEpochs', 300, ... % 设置最大训练次数为300
'GradientThreshold', 1, ... % 设置梯度阈值为1,防止梯度爆炸
'InitialLearnRate', 5e-3, ... % 设置初始学习率为0.005
'LearnRateSchedule', 'piecewise', ... % 学习率调整策略为分段调整
'LearnRateDropPeriod', 250, ... % 每250次训练后调整学习率
'LearnRateDropFactor',0.1, ... % 学习率下降因子为0.1
'L2Regularization', 1e-4, ... % 设置L2正则化参数为1e-4,防止过拟合
'ExecutionEnvironment', 'auto',... % 自动选择训练环境(CPU或GPU)
'Verbose', false, ... % 关闭详细训练信息显示
'Plots', 'training-progress'); % 显示训练过程的进度图
- trainingOptions:配置训练选项,选择优化算法、学习率策略、正则化等参数。
- ‘adam’:选择Adam优化算法,适用于大规模数据和高效训练。
- ‘MaxEpochs’, 300:设置最大训练次数为300。
- ‘GradientThreshold’, 1:设置梯度阈值为1,防止梯度爆炸。
- ‘InitialLearnRate’, 5e-3:设置初始学习率为0.005,控制权重更新的步长大小。
- ‘LearnRateSchedule’, ‘piecewise’:学习率调整策略为分段调整。
- ‘LearnRateDropPeriod’, 250:每250次训练后调整学习率。
- ‘LearnRateDropFactor’,0.1:学习率下降因子为0.1,表示学习率每次下降到原来的10%。
- ‘L2Regularization’, 1e-4:设置L2正则化参数为1e-4,防止过拟合。
- ‘ExecutionEnvironment’, ‘auto’:自动选择训练环境(CPU或GPU),提高训练效率。
- ‘Verbose’, false:关闭详细训练信息显示,避免命令行过于冗杂。
- ‘Plots’, ‘training-progress’:显示训练过程的进度图,实时监控训练情况。
12. 训练模型
net = trainNetwork(p_train, t_train, layers, options); % 使用训练集数据训练LSTM神经网络
- trainNetwork:使用训练集数据
p_train
和t_train
,按照定义的网络结构layers
和训练选项options
训练LSTM神经网络。 - net:训练好的LSTM神经网络模型,包含优化后的权重和偏置参数。
13. 仿真预测
t_sim1 = predict(net, p_train); % 使用训练集数据进行仿真预测,得到训练集预测结果
t_sim2 = predict(net, p_test ); % 使用测试集数据进行仿真预测,得到测试集预测结果
- predict:使用训练好的LSTM神经网络对输入数据进行预测。
- t_sim1:训练集的预测结果。
- t_sim2:测试集的预测结果。
14. 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output); % 将训练集预测结果反归一化,恢复到原始尺度
T_sim2 = mapminmax('reverse', t_sim2, ps_output); % 将测试集预测结果反归一化,恢复到原始尺度
- mapminmax(‘reverse’, …):使用
mapminmax
函数将预测结果反归一化,恢复到原始数据的尺度。 - T_sim1:训练集预测结果,恢复到原始尺度。
- T_sim2:测试集预测结果,恢复到原始尺度。
15. 均方根误差(RMSE)
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M); % 计算训练集的均方根误差(RMSE)
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N); % 计算测试集的均方根误差(RMSE)
- RMSE:均方根误差,衡量模型预测值与真实值之间的平均差异。
- error1:
- 训练集的RMSE,计算公式为:
[
RMSE = \sqrt{\frac{1}{M} \sum_{i=1}^{M} (T_{\text{sim1}} - T_{\text{train}})^2}
]
- 训练集的RMSE,计算公式为:
- error2:
- 测试集的RMSE,计算公式为:
[
RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (T_{\text{sim2}} - T_{\text{test}})^2}
]
- 测试集的RMSE,计算公式为:
16. 查看网络结构
analyzeNetwork(net) % 可视化和分析LSTM网络的结构和参数
- analyzeNetwork:可视化和分析训练好的LSTM网络结构和参数,包括层次结构、连接权重等,帮助用户理解和优化网络。
17. 绘图
绘制训练集预测结果对比图
figure
plot(1:M, T_train, 'r-', 1:M, T_sim1, 'b-', 'LineWidth', 1) % 绘制训练集真实值与预测值的对比曲线,红色实线为真实值,蓝色实线为预测值
legend('真实值', '预测值') % 添加图例,区分真实值和预测值
xlabel('预测样本') % 设置X轴标签为“预测样本”
ylabel('预测结果') % 设置Y轴标签为“预测结果”
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]}; % 创建标题字符串,包括RMSE值
title(string) % 添加图形标题
xlim([1, M]) % 设置X轴显示范围为[1, M]
grid % 显示网格,提升图形的可读性
- figure:创建新的图形窗口。
- plot(1:M, T_train, ‘r-’, 1:M, T_sim1, ‘b-’, ‘LineWidth’, 1):
- 绘制训练集真实值
T_train
与预测值t_sim1
的对比曲线,红色实线表示真实值,蓝色实线表示预测值。
- 绘制训练集真实值
- legend(‘真实值’, ‘预测值’):
- 添加图例,区分真实值和预测值。
- xlabel(‘预测样本’) 和 ylabel(‘预测结果’):
- 设置X轴和Y轴的标签为“预测样本”和“预测结果”。
- string = {‘训练集预测结果对比’; [‘RMSE=’ num2str(error1)]};:
- 创建标题字符串,包括RMSE值。
- title(string):
- 添加图形标题。
- xlim([1, M]):
- 设置X轴的显示范围为[1, M],其中M为训练集样本数。
- grid:
- 显示网格,提升图形的可读性。
绘制测试集预测结果对比图
figure
plot(1:N, T_test, 'r-', 1:N, T_sim2, 'b-', 'LineWidth', 1) % 绘制测试集真实值与预测值的对比曲线,红色实线为真实值,蓝色实线为预测值
legend('真实值', '预测值') % 添加图例,区分真实值和预测值
xlabel('预测样本') % 设置X轴标签为“预测样本”
ylabel('预测结果') % 设置Y轴标签为“预测结果”
string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]}; % 创建标题字符串,包括RMSE值
title(string) % 添加图形标题
xlim([1, N]) % 设置X轴显示范围为[1, N]
grid % 显示网格,提升图形的可读性
- figure:创建新的图形窗口。
- plot(1:N, T_test, ‘r-’, 1:N, T_sim2, ‘b-’, ‘LineWidth’, 1):
- 绘制测试集真实值
T_test
与预测值t_sim2
的对比曲线,红色实线表示真实值,蓝色实线表示预测值。
- 绘制测试集真实值
- legend(‘真实值’, ‘预测值’):
- 添加图例,区分真实值和预测值。
- xlabel(‘预测样本’) 和 ylabel(‘预测结果’):
- 设置X轴和Y轴的标签为“预测样本”和“预测结果”。
- string = {‘测试集预测结果对比’; [‘RMSE=’ num2str(error2)]};:
- 创建标题字符串,包括RMSE值。
- title(string):
- 添加图形标题。
- xlim([1, N]):
- 设置X轴的显示范围为[1, N],其中N为测试集样本数。
- grid:
- 显示网格,提升图形的可读性。
18. 相关指标计算
% 决定系数(R²)
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2; % 计算训练集的决定系数R²
R2 = 1 - norm(T_test - T_sim2')^2 / norm(T_test - mean(T_test ))^2; % 计算测试集的决定系数R²
disp(['训练集数据的R2为:', num2str(R1)]) % 显示训练集的R²
disp(['测试集数据的R2为:', num2str(R2)]) % 显示测试集的R²
% 平均绝对误差(MAE)
mae1 = sum(abs(T_sim1' - T_train)) ./ M ; % 计算训练集的平均绝对误差MAE
mae2 = sum(abs(T_sim2' - T_test )) ./ N ; % 计算测试集的平均绝对误差MAE
disp(['训练集数据的MAE为:', num2str(mae1)]) % 显示训练集的MAE
disp(['测试集数据的MAE为:', num2str(mae2)]) % 显示测试集的MAE
% 平均偏差误差(MBE)
mbe1 = sum(T_sim1' - T_train) ./ M ; % 计算训练集的平均偏差误差MBE
mbe2 = sum(T_sim2' - T_test ) ./ N ; % 计算测试集的平均偏差误差MBE
disp(['训练集数据的MBE为:', num2str(mbe1)]) % 显示训练集的MBE
disp(['测试集数据的MBE为:', num2str(mbe2)]) % 显示测试集的MBE
% 平均绝对百分比误差(MAPE)
mape1 = sum(abs((T_sim1' - T_train)./T_train)) ./ M ; % 计算训练集的平均绝对百分比误差MAPE
mape2 = sum(abs((T_sim2' - T_test )./T_test )) ./ N ; % 计算测试集的平均绝对百分比误差MAPE
disp(['训练集数据的MAPE为:', num2str(mape1)]) % 显示训练集的MAPE
disp(['测试集数据的MAPE为:', num2str(mape2)]) % 显示测试集的MAPE
% 均方根误差(RMSE)
disp(['训练集数据的RMSE为:', num2str(error1)]) % 显示训练集的RMSE
disp(['测试集数据的RMSE为:', num2str(error2)]) % 显示测试集的RMSE
-
决定系数(R²):
- R1:训练集的决定系数R²,衡量模型对训练数据的拟合程度。值越接近1,表示模型对数据的解释能力越强。
- R2:测试集的决定系数R²,衡量模型对测试数据的泛化能力。值越接近1,表示模型在未见数据上的表现越好。
- disp([‘训练集数据的R2为:’, num2str(R1)]):
- 显示训练集的R²值。
- disp([‘测试集数据的R2为:’, num2str(R2)]):
- 显示测试集的R²值。
-
平均绝对误差(MAE):
- mae1:训练集的平均绝对误差MAE,表示预测值与真实值之间的平均绝对差异。值越小,表示模型性能越好。
- mae2:测试集的平均绝对误差MAE,表示预测值与真实值之间的平均绝对差异。值越小,表示模型性能越好。
- disp([‘训练集数据的MAE为:’, num2str(mae1)]):
- 显示训练集的MAE值。
- disp([‘测试集数据的MAE为:’, num2str(mae2)]):
- 显示测试集的MAE值。
-
平均偏差误差(MBE):
- mbe1:训练集的平均偏差误差MBE,衡量模型是否存在系统性偏差。正值表示模型倾向于高估,负值表示模型倾向于低估。
- mbe2:测试集的平均偏差误差MBE,衡量模型是否存在系统性偏差。正值表示模型倾向于高估,负值表示模型倾向于低估。
- disp([‘训练集数据的MBE为:’, num2str(mbe1)]):
- 显示训练集的MBE值。
- disp([‘测试集数据的MBE为:’, num2str(mbe2)]):
- 显示测试集的MBE值。
-
平均绝对百分比误差(MAPE):
- mape1:训练集的平均绝对百分比误差MAPE,表示预测值与真实值之间的平均绝对百分比差异。适用于评估相对误差。
- mape2:测试集的平均绝对百分比误差MAPE,表示预测值与真实值之间的平均绝对百分比差异。适用于评估相对误差。
- disp([‘训练集数据的MAPE为:’, num2str(mape1)]):
- 显示训练集的MAPE值。
- disp([‘测试集数据的MAPE为:’, num2str(mape2)]):
- 显示测试集的MAPE值。
-
均方根误差(RMSE):
- error1:训练集的RMSE,显示训练集的均方根误差。
- error2:测试集的RMSE,显示测试集的均方根误差。
- disp([‘训练集数据的RMSE为:’, num2str(error1)]):
- 显示训练集的RMSE值。
- disp([‘测试集数据的RMSE为:’, num2str(error2)]):
- 显示测试集的RMSE值。
19. 绘制散点图
绘制训练集散点图
figure
scatter(T_train, T_sim1, sz, c) % 绘制训练集真实值与预测值的散点图,蓝色散点表示预测结果
hold on % 保持当前图形,允许在同一图形上绘制多条曲线
plot(xlim, ylim, '--k') % 绘制理想预测线(真实值等于预测值的对角线),使用黑色虚线表示
xlabel('训练集真实值'); % 设置X轴标签为“训练集真实值”
ylabel('训练集预测值'); % 设置Y轴标签为“训练集预测值”
xlim([min(T_train) max(T_train)]) % 设置X轴的显示范围为[最小真实值, 最大真实值]
ylim([min(T_sim1) max(T_sim1)]) % 设置Y轴的显示范围为[最小预测值, 最大预测值]
title('训练集预测值 vs. 训练集真实值') % 设置图形的标题为“训练集预测值 vs. 训练集真实值”
- figure:创建新的图形窗口。
- scatter(T_train, T_sim1, sz, c):
- 使用
scatter
函数绘制训练集真实值T_train
与预测值t_sim1
的散点图,蓝色散点表示预测结果。
- 使用
- hold on:
- 保持当前图形,允许在同一图形上绘制多条曲线。
- plot(xlim, ylim, ‘–k’):
- 绘制理想预测线,即真实值等于预测值的对角线,使用黑色虚线表示。
- xlabel(‘训练集真实值’) 和 ylabel(‘训练集预测值’):
- 设置X轴和Y轴的标签为“训练集真实值”和“训练集预测值”。
- xlim([min(T_train) max(T_train)]) 和 ylim([min(T_sim1) max(T_sim1)]):
- 设置X轴和Y轴的显示范围为数据的最小值和最大值。
- title(‘训练集预测值 vs. 训练集真实值’):
- 设置图形的标题为“训练集预测值 vs. 训练集真实值”。
绘制测试集散点图
figure
scatter(T_test, T_sim2, sz, c) % 绘制测试集真实值与预测值的散点图,蓝色散点表示预测结果
hold on % 保持当前图形,允许在同一图形上绘制多条曲线
plot(xlim, ylim, '--k') % 绘制理想预测线(真实值等于预测值的对角线),使用黑色虚线表示
xlabel('测试集真实值'); % 设置X轴标签为“测试集真实值”
ylabel('测试集预测值'); % 设置Y轴标签为“测试集预测值”
xlim([min(T_test) max(T_test)]) % 设置X轴的显示范围为[最小真实值, 最大真实值]
ylim([min(T_sim2) max(T_sim2)]) % 设置Y轴的显示范围为[最小预测值, 最大预测值]
title('测试集预测值 vs. 测试集真实值') % 设置图形的标题为“测试集预测值 vs. 测试集真实值”
- figure:创建新的图形窗口。
- scatter(T_test, T_sim2, sz, c):
- 使用
scatter
函数绘制测试集真实值T_test
与预测值t_sim2
的散点图,蓝色散点表示预测结果。
- 使用
- hold on:
- 保持当前图形,允许在同一图形上绘制多条曲线。
- plot(xlim, ylim, ‘–k’):
- 绘制理想预测线,即真实值等于预测值的对角线,使用黑色虚线表示。
- xlabel(‘测试集真实值’) 和 ylabel(‘测试集预测值’):
- 设置X轴和Y轴的标签为“测试集真实值”和“测试集预测值”。
- xlim([min(T_test) max(T_test)]) 和 ylim([min(T_sim2) max(T_sim2)]):
- 设置X轴和Y轴的显示范围为数据的最小值和最大值。
- title(‘测试集预测值 vs. 测试集真实值’):
- 设置图形的标题为“测试集预测值 vs. 测试集真实值”。
代码使用注意事项
-
数据集格式:
- 时间序列数据:确保
数据集.xlsx
中的数据为单列时间序列数据,表示时间序列的连续值。 - 数据顺序:时间序列数据应按照时间顺序排列,确保数据的时间依赖关系。
- 时间序列数据:确保
-
参数调整:
- 延时步长(kim):通过
kim = 15
设定,表示使用15个历史数据点作为输入特征。根据时间序列的特性和周期性调整延时步长,步长过大可能导致模型复杂度增加,步长过小可能导致模型捕捉不到足够的时间依赖信息。 - 预测步长(zim):通过
zim = 1
设定,表示预测当前点之后的1个时间点的值。根据实际需求调整预测步长,适用于单步预测或多步预测。 - 训练集比例(num_size):通过
num_size = 0.7
设定,表示70%的数据用于训练,30%的数据用于测试。根据数据集大小和分布调整训练集比例,确保训练集和测试集具有代表性。 - LSTM隐藏单元数(lstmLayer(10, …)):通过
lstmLayer(10, ...)
设定LSTM层的隐藏单元数为10。根据数据的复杂度和特征数量调整隐藏单元数,隐藏单元数过少可能导致欠拟合,隐藏单元数过多可能导致过拟合。 - 训练选项(trainingOptions):
- 最大训练次数(‘MaxEpochs’, 300):根据数据集的大小和模型复杂度调整最大训练次数,确保模型充分训练但避免过拟合。
- 学习率(‘InitialLearnRate’, 5e-3):设置初始学习率,影响模型收敛速度和稳定性。
- 学习率调整策略(‘LearnRateSchedule’, ‘piecewise’):选择适当的学习率调整策略,提升模型训练效果。
- 学习率下降因子与周期(‘LearnRateDropFactor’,0.1; ‘LearnRateDropPeriod’, 250):设置学习率下降的频率和幅度,帮助模型在训练后期细化权重。
- 正则化参数(‘L2Regularization’, 1e-4):设置正则化参数,防止模型过拟合。
- 延时步长(kim):通过
-
环境要求:
- MATLAB版本:确保使用的MATLAB版本支持
trainNetwork
、sequenceInputLayer
、lstmLayer
等深度学习相关函数。 - 工具箱:
- Deep Learning Toolbox:支持使用LSTM神经网络相关函数,如
trainNetwork
、lstmLayer
、sequenceInputLayer
等。
- Deep Learning Toolbox:支持使用LSTM神经网络相关函数,如
- MATLAB版本:确保使用的MATLAB版本支持
-
性能优化:
- 数据预处理:
- 归一化:通过
mapminmax
函数对输入数据和目标变量进行归一化,提升模型训练速度和稳定性。 - 降维:如果输入特征过多,可以考虑使用主成分分析(PCA)等降维方法,减少特征数量,提升模型训练效率和性能。
- 归一化:通过
- 模型参数优化:
- LSTM隐藏单元数:根据数据的复杂度和特征数量调整LSTM层的隐藏单元数,优化模型的特征提取能力和拟合能力。
- 学习率调整:通过调整学习率和学习率调整策略,提升模型的收敛速度和稳定性。
- 正则化参数调整:通过调整正则化参数,防止模型过拟合。
- 数据预处理:
-
结果验证:
- 交叉验证:采用k折交叉验证方法评估模型的稳定性和泛化能力,避免因数据划分偶然性导致的性能波动。
- 多次运行:由于LSTM模型对初始权重和训练过程敏感,建议多次运行模型,取平均性能指标,以获得更稳定的评估结果。
- 模型对比:将LSTM时序预测模型与其他预测模型(如ARIMA、BP神经网络、ELM等)进行对比,评估不同模型在相同数据集上的表现差异。
-
性能指标理解:
- 决定系数(R²):衡量模型对数据的拟合程度,值越接近1表示模型解释变量变异的能力越强。
- 平均绝对误差(MAE):表示预测值与真实值之间的平均绝对差异,值越小表示模型性能越好。
- 平均偏差误差(MBE):表示预测值与真实值之间的平均差异,正值表示模型倾向于高估,负值表示模型倾向于低估。
- 平均绝对百分比误差(MAPE):表示预测值与真实值之间的平均绝对百分比差异,适用于评估相对误差。
- 均方根误差(RMSE):表示预测值与真实值之间的平方差的平均值的平方根,值越小表示模型性能越好。
-
模型分析与可视化:
- 网络结构分析:通过
analyzeNetwork
函数可视化和分析LSTM网络的结构和参数,了解网络的层次结构和连接权重。 - 训练过程监控:通过
training-progress
图实时监控训练过程中的损失函数变化,了解模型的收敛情况。 - 预测结果对比图:通过绘制训练集和测试集的真实值与预测值对比图,直观展示模型的预测效果。
- 散点图:通过绘制真实值与预测值的散点图,评估模型的拟合能力和误差分布。
- 误差分析:通过计算并分析RMSE、R²、MAE、MBE、MAPE等指标,全面评估模型的性能和预测准确性。
- 网络结构分析:通过
-
代码适应性:
- 模型参数调整:根据实际数据和任务需求,调整LSTM模型的参数(如隐藏单元数、学习率等),优化模型性能。
- 数据格式匹配:确保输入数据的格式与LSTM模型的要求一致。输入数据应为cell数组,每个cell包含一个样本的时间序列数据。
- 特征处理:如果输入数据包含类别特征,需先进行数值编码转换,确保所有特征均为数值型数据。
通过理解和应用上述LSTM时序预测模型,用户可以有效地处理各种时间序列预测任务,充分发挥LSTM在捕捉长期依赖和处理复杂时间序列数据方面的优势,提升模型的预测准确性和鲁棒性。