一、对称矩阵、Hermitian矩阵与循环矩阵
对称矩阵 A A A是一个其元素 a i j a_{ij} aij关于主对角线对称的实正方矩阵,即有:
A T = A 或 a i j = a j i ( 2.1.1 ) A^T=A\quad或\quad a_{ij}=a_{ji}\quad\quad\quad\quad\quad(2.1.1) AT=A或aij=aji(2.1.1)
2 基本矩阵
3 置换矩阵、互换矩阵与选择矩阵
4 正交矩阵与酋矩阵
向量 x 1 , x 2 , … , x k ∈ C n x_1,x_2,\dots,x_k\in C^n x1,x2,…,xk∈Cn组成一正交组,若 x i H x j = 0 , 1 ≤ i < j ≤ k x_i^Hx_j=0,\ 1\le i<j\le k xiHxj=0, 1≤i<j≤k。此外,若向量还是归一化的,即 x i H x i = 1 , i = 1 , 2 , … , k x_i^Hx_i=1,\ i=1,2,\dots,k xiHxi=1, i=1,2,…,k,则该正交组称为标准正交组。
定理2.4.1
一组正交的非零向量是线性无关的。
(?)这里证明没看懂