二、特殊矩阵

一、对称矩阵、Hermitian矩阵与循环矩阵

对称矩阵 A A A是一个其元素 a i j a_{ij} aij关于主对角线对称的实正方矩阵,即有:

A T = A 或 a i j = a j i ( 2.1.1 ) A^T=A\quad或\quad a_{ij}=a_{ji}\quad\quad\quad\quad\quad(2.1.1) AT=Aaij=aji(2.1.1)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2 基本矩阵

3 置换矩阵、互换矩阵与选择矩阵

4 正交矩阵与酋矩阵

向量 x 1 , x 2 , … , x k ∈ C n x_1,x_2,\dots,x_k\in C^n x1,x2,,xkCn组成一正交组,若 x i H x j = 0 ,   1 ≤ i < j ≤ k x_i^Hx_j=0,\ 1\le i<j\le k xiHxj=0, 1i<jk。此外,若向量还是归一化的,即 x i H x i = 1 ,   i = 1 , 2 , … , k x_i^Hx_i=1,\ i=1,2,\dots,k xiHxi=1, i=1,2,,k,则该正交组称为标准正交组。

定理2.4.1

一组正交的非零向量是线性无关的。

在这里插入图片描述
(?)这里证明没看懂

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值