1 拓扑空间
首先回顾数学分析中函数连续性是怎么规定的:
设 f : E 1 → E 1 f:E^1\to E^1 f:E1→E1是一个函数, x 0 ∈ E 1 x_0\in E^1 x0∈E1。 f f f在 x 0 x_0 x0处连续的含义有多种描述方法,例如:
1.1 拓扑空间的定义
1.2 度量拓扑
集合 X X X上的一个度量 d d d是一个映射 d : X × X → R d:X\times X\to R d:X×X→R,它满足:
- 正定性: d ( x , x ) = 0 , ∀ x ∈ X d(x,x)=0,\forall x\in X d(x,x)=0,∀x∈X,且 d ( x , y ) > 0 , 当 x ≠ y d(x,y)>0, 当 x\ne y d(x,y)>0,当x=y
- 对称性: d ( x , y ) = d ( y , x ) , ∀ x , y ∈ X d(x,y)=d(y,x),\forall x,y \in X d(x,y)=d(y,x),∀x,y∈X
- 三角不等式: d ( x , z ) ≤ d ( x , y ) + d ( y , z ) , ∀ x , y , z ∈ X d(x,z)\le d(x,y)+d(y,z),\quad \forall x,y,z \in X d(x,z)≤d(x,y)+d(y,z),∀x,y,z∈X
当集合 X X X上规定了一个度量 d d d后,称为度量空间,记作 ( X , d ) (X,d) (X,d)