一、拓扑空间与连续映射

本文探讨了数学分析中函数连续性的概念,从拓扑空间的角度出发进行阐述。拓扑空间的定义引入,以及度量拓扑如何建立在集合上的度量,这些构成了理解函数连续性的基础。通过度量空间的概念,我们可以更深入地理解函数在某点的连续性是如何通过距离的性质来刻画的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 拓扑空间

首先回顾数学分析中函数连续性是怎么规定的:

f : E 1 → E 1 f:E^1\to E^1 f:E1E1是一个函数, x 0 ∈ E 1 x_0\in E^1 x0E1 f f f x 0 x_0 x0处连续的含义有多种描述方法,例如:

在这里插入图片描述
在这里插入图片描述

1.1 拓扑空间的定义

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.2 度量拓扑

集合 X X X上的一个度量 d d d是一个映射 d : X × X → R d:X\times X\to R d:X×XR,它满足:

  1. 正定性: d ( x , x ) = 0 , ∀ x ∈ X d(x,x)=0,\forall x\in X d(x,x)=0,xX,且 d ( x , y ) > 0 , 当 x ≠ y d(x,y)>0, 当 x\ne y d(x,y)>0,x=y
  2. 对称性: d ( x , y ) = d ( y , x ) , ∀ x , y ∈ X d(x,y)=d(y,x),\forall x,y \in X d(x,y)=d(y,x),x,yX
  3. 三角不等式: d ( x , z ) ≤ d ( x , y ) + d ( y , z ) , ∀ x , y , z ∈ X d(x,z)\le d(x,y)+d(y,z),\quad \forall x,y,z \in X d(x,z)d(x,y)+d(y,z),x,y,zX

当集合 X X X上规定了一个度量 d d d后,称为度量空间,记作 ( X , d ) (X,d) (X,d)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值