深度学习笔记(4):1.11 为什么要使用卷积运算?

本文探讨了深度学习中使用卷积运算而非全连接网络的原因,主要优势在于参数共享和稀疏连接。参数共享减少了所需估计的参数数量,有助于防止过拟合,并且使模型能在小训练集上训练。稀疏连接意味着每个输出只与输入的局部区域相关,增加了模型的效率。此外,卷积神经网络(CNN)擅长捕捉平移不变性,使其在计算机视觉任务中表现出色。
摘要由CSDN通过智能技术生成

1.11 为什么要使用卷积(why convolutions?)

首先直观上,使用卷积比全连接网络少很多参数,如下图所示:

对于32*32*3的图像,令f=5,使用6个filter,参数值为5*5*6+6=156个参数,权重参数个数为5*5*6,偏差为6个,所以是156。但是全连接会产生多少个参数呢?将这两个图片都flatten成向量,分别是3072维和4704维向量,这时使用全连接就会有3072*4704约为14m的权重需要我们估计,而32*32*3这个图片也不是很大,所以不一定能很好估计这么多参数。很少的参数以便我们可以使用较小的训练集来训练,有利于预防过拟合。 

针对于全连接网络,使用卷积的优点其实有两条:参数共享(parameter sharing)和稀疏连接(sparsity connection)。如下图所示:

什么是参数共享(parameter sharing)?表面上直接来看就是因为卷积运算就是filter同原图中各个部分进行运算,所以它们共用了同一部分参数,这就是参数共享,但实际上这样做是因为合理性,因为filter作用就是特征探测器,通过卷积运算得到一些低阶或者高阶特征

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值