1.11 为什么要使用卷积(why convolutions?)
首先直观上,使用卷积比全连接网络少很多参数,如下图所示:
对于32*32*3的图像,令f=5,使用6个filter,参数值为5*5*6+6=156个参数,权重参数个数为5*5*6,偏差为6个,所以是156。但是全连接会产生多少个参数呢?将这两个图片都flatten成向量,分别是3072维和4704维向量,这时使用全连接就会有3072*4704约为14m的权重需要我们估计,而32*32*3这个图片也不是很大,所以不一定能很好估计这么多参数。很少的参数以便我们可以使用较小的训练集来训练,有利于预防过拟合。
针对于全连接网络,使用卷积的优点其实有两条:参数共享(parameter sharing)和稀疏连接(sparsity connection)。如下图所示:
什么是参数共享(parameter sharing)?表面上直接来看就是因为卷积运算就是filter同原图中各个部分进行运算,所以它们共用了同一部分参数,这就是参数共享,但实际上这样做是因为合理性,因为filter作用就是特征探测器,通过卷积运算得到一些低阶或者高阶特征