图像分割入门

图像分割 传统方法
https://zhuanlan.zhihu.com/p/30732385

语义分割论文-DeepLab系列
http://hellodfan.com/2018/01/22/%E8%AF%AD%E4%B9%89%E5%88%86%E5%89%B2%E8%AE%BA%E6%96%87-DeepLab%E7%B3%BB%E5%88%97/

FCN可以接受任意尺寸的输入图像,采用反卷积层对最后一个卷积层的feature map进行上采样, 使它恢复到输入图像相同的尺寸,从而可以对每个像素都产生了一个预测, 同时保留了原始输入图像中的空间信息, 最后在上采样的特征图上进行逐像素分类。最后逐个像素计算softmax分类的损失, 相当于每一个像素对应一个训练样本。

FCN与CNN的区域在把于CNN最后的全连接层换成卷积层,输出的是一张已经Label好的图片。
https://zhuanlan.zhihu.com/p/30195134

空洞卷积/扩张卷积(Dilated Convolutions)
标准卷积在特定场景如图像语义分割下存在一定的问题,比如通过池化操作降低计算量,同时增大感受野,再通过反卷积(上采样)扩充图像到原始大小,这中间会丢失很多信息,特别是空间结构信息,另一个问题是小的物体信息无法复原重建出来。
而在空洞卷积中,避免了使用池化操作的同时增大了感受野,不需要图像分辨率的压缩,保留了图像内部的数据结构,可以有比标准卷积更好的分割效果。
https://blog.csdn.net/dcrmg/article/details/81035711

在图像分割领域,图像输入到FCN(全连接网络)先像传统的CNN那样对图像做卷积再pooling,降低图像尺寸的同时增大感受野,但是由于图像分割预测是pixel-wise的输出,所以要将pooling后较小的图像尺寸upsampling到原始的图像尺寸进行预测(upsampling一般采用deconv反卷积操作)。
在先减小再增大尺寸的过程中,肯定有一些信息损失掉了,那么能不能设计一种新的操作,不通过pooling也能有较大的感受野看到更多的信息呢?答案就是dilated conv(空洞卷积)。

deconv和dilated conv的区别:
deconv的其中一个用途是做upsampling,即增大图像尺寸。而dilated conv并不是做upsampling,而是增大感受野。
http://imgtec.eetrend.com/d6-imgtec/blog/2017-07/10014.html

增加感受野
感受野是卷积神经网络(CNN)每一层输出的特征图(feature map)上的像素点在原始输入图像上映射的区域大小。

感受野的计算:
'''
RF: 待计算的feature map上的感受野大小
stride: 卷积的步长(之前所有层stride的乘积)
fsize: 卷积层滤波器的大小
'''
RF = 1
for layer in (high layer To low layer):
  RF = ((RF -1)* stride) + fsize

增加感受野:增加层数、增大strides,增加fsize即卷积滤波器的大小都可以增加感受野的大小。
增加pooling层,但是会降低准确性(pooling过程中造成了信息损失)
增大卷积核的kernel size,但是会增加参数
增加卷积层的个数,但是会面临梯度消失的问题
https://blog.csdn.net/a529975125/article/details/80888463

南开大学提出最新边缘检测与图像分割算法,精度刷新记录(附开源地址)
https://blog.csdn.net/dQCFKyQDXYm3F8rB0/article/details/83593069

Graph Cut
https://blog.csdn.net/zouxy09/article/details/8532111
GrabCut是对Graph Cut的改进版,是迭代的Graph Cut。该算法利用了图像中的纹理(颜色)信息和边界(反差)信息,只要少量的用户交互操作即可得到比较好的分割结果。
只需要在目标外面画一个框,把目标框住,就可以完成良好的分割:

Graph Cut的能量最小化(分割)是一次达到的,而Grab Cut取代为一个不断进行分割估计和模型参数学习的交互迭代过程;
https://blog.csdn.net/zouxy09/article/details/8534954

https://blog.csdn.net/UFv59to8/article/details/82880469


 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WX Chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值