Embedding层

本文阐述了使用Embedding层的两大关键原因:避免高维稀疏的One-hot编码,并在神经网络训练过程中更新向量。介绍了如何通过索引编码句子并创建嵌入矩阵,以及WordEmbedding将单词转换为固定长度向量的方法。
摘要由CSDN通过智能技术生成

为什么要使用嵌入层 Embedding呢? 主要有这两大原因:
1、使用One-hot 方法编码的向量会很高维也很稀疏。
2、训练神经网络的过程中,每个嵌入的向量都会得到更新。

“deep learning is very deep”

通过索引对该句子进行编码
1 2 3 4 1

创建嵌入矩阵

这样,我们就可以使用嵌入矩阵来而不是庞大的one-hot编码向量来保持每个向量更小。简而言之,嵌入层embedding在这里做的就是把单词“deep”用向量[.32, .02, .48, .21, .56, .15]来表达。
https://blog.csdn.net/u010412858/article/details/77848878

Embedding层就是以one hot为输入、中间层节点为字向量维数的全连接层
https://kexue.fm/archives/4122
 

利用Word Embedding将一个单词转换成固定长度的向量表示,从而便于进行数学处理。

使用数学模型处理文本语料的第一步就是把文本转换成数学表示,有两种方法,第一种方法可以通过one-hot矩阵表示一个单词

第二种方法是Word Embedding矩阵给每个单词分配一个固定长度的向量表示,这个长度可以自行设定

Word Embedding的生成我们使用tensorflow,通过构造一个包含了一个隐藏层的神经网络实现。
有两种业界常用的Word Embedding生成方式,Continuous Bag Of Words (CBOW)方法和n-gram方法
https://www.jianshu.com/p/394892ec58b5

word2vec是一个将词表示为一个向量的工具,通过该向量表示,可以用来进行更深入的自然语言处理,比如机器翻译等。
https://www.jianshu.com/p/418f27df3968
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WX Chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值