未经审查的 Mistral v0.2 Dolphin LLM - 不会拒绝任何东西!

本文介绍了Dolphin-2.8模型,它是基于Mistral-7b-v0.2的微调版本,通过多个评估集展示了其性能。模型详细信息包括训练参数、评估指标和许可情况,强调了负责任使用的必要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dolphin 2.8 Mistral 7b v0.2 🐬

Crusoe Cloud - 提供优秀的按需10xL40S节点
Winston Sou - 与一位慷慨的匿名赞助商一起捐赠了大量个人拥有的计算资源!
Abacus AI - 我的雇主和很多方面的合作伙伴。
该模型基于 Mistral-7b-v0.2,这是 MistralAI 于 2024 年 3 月 23 日发布的新基础模型,但尚未在 HuggingFace 上发布。 感谢@alpindale 的转换/发布。

基础模型具有 32k 上下文,全权重微调具有 16k 序列长度。

Crusoe Cloud 提供的 10x L40S 花了 3 天

Dolphin-2.8 具有多种指导、对话和编码技能。

海豚未经审查。 我已经过滤了数据集以消除对齐和偏差。 这使得模型更加合规。 建议您在将模型公开为服务之前实现自己的对齐层。 它将高度遵守任何要求,甚至是不道德的要求。 请阅读我关于未经审查模型的博客文章。 https://erichartford.com/uncensored-models 您应对使用此模型创建的任何内容负责。 负责任地享受。

Dolphin 已获得 Apache 2.0 许可。 我授予任何用途的许可,包括商业用途。 Dolphin 使用 GPT4 等模型生成的数据进行训练。

Evals

{
  "arc_challenge": {
    "acc,none": 0.5921501706484642,
    "acc_stderr,none": 0.014361097288449701,
    "acc_norm,none": 0.6339590443686007,
    "acc_norm_stderr,none": 0.014077223108470139
  },
  "gsm8k": {
    "exact_match,strict-match": 0.4783927217589083,
    "exact_match_stderr,strict-match": 0.013759618667051773,
    "exact_match,flexible-extract": 0.5367702805155421,
    "exact_match_stderr,flexible-extract": 0.013735191956468648
  },
  "hellaswag": {
    "acc,none": 0.6389165504879506,
    "acc_stderr,none": 0.004793330525656218,
    "acc_norm,none": 0.8338976299541924,
    "acc_norm_stderr,none": 0.00371411888431746
  },
  "mmlu": {
    "acc,none": 0.6122347243982339,
    "acc_stderr,none": 0.003893774654142997
  },
  "truthfulqa_mc2": {
    "acc,none": 0.5189872652778472,
    "acc_stderr,none": 0.014901128316426086
  },
  "winogrande": {
    "acc,none": 0.7971586424625099,
    "acc_stderr,none": 0.011301439925936643
  }
}

 https://download.csdn.net/download/klam2020/89104452?spm=1001.2014.3001.5501

See axolotl config [ axolotl version: 0.4.0]


base_model: alpindale/Mistral-7B-v0.2-hf
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: /workspace/datasets/dolphin201-sharegpt2.jsonl
    type: sharegpt
  - path: /workspace/datasets/dolphin-coder-translate-sharegpt2.jsonl
    type: sharegpt
  - path: /workspace/datasets/dolphin-coder-codegen-sharegpt2.jsonl
    type: sharegpt
  - path: /workspace/datasets/m-a-p_Code-Feedback-sharegpt.jsonl
    type: sharegpt
  - path: /workspace/datasets/m-a-p_CodeFeedback-Filtered-Instruction-sharegpt.jsonl
    type: sharegpt
  - path: /workspace/datasets/not_samantha_norefusals.jsonl
    type: sharegpt
  - path: /workspace/datasets/openhermes2_5-sharegpt.jsonl
    type: sharegpt

chat_template: chatml

dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: /workspace/dolphin-2.8-mistral-7b

sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true

wandb_project: dolphin
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 3
num_epochs: 4
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
lr_scheduler: cosine
learning_rate: 0.000005
optimizer: adamw_bnb_8bit

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10

eval_steps: 73
eval_table_size:
eval_table_max_new_tokens:
eval_sample_packing: false
saves_per_epoch: 
save_steps: 73
save_total_limit: 2
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
  eos_token: "<|im_end|>"
tokens:
  - "<|im_start|>"

workspace/dolphin-2.8-mistral-7b

该模型是alpindale/Mistral-7B-v0.2-hf 在 None 数据集上的微调版本。 在评估集上取得了以下结果:

  • 损失:0.4828

型号说明
需要更多信息

预期用途和限制
需要更多信息

训练和评估数据
需要更多信息

培训流程
训练超参数

训练期间使用了以下超参数:

  • learning_rate: 5e-06
  • train_batch_size: 3
  • eval_batch_size: 3
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 10
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 240
  • total_eval_batch_size: 30
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4

培训成果

Training LossEpochStepValidation Loss
1.17360.011.0338
0.61060.36730.5439
0.57660.721460.5171
0.53951.062190.5045
0.52181.422920.4976
0.53361.783650.4915
0.50182.134380.4885
0.51132.485110.4856
0.50662.845840.4838
0.49673.196570.4834
0.49563.557300.4830
0.50263.98030.4828

 框架版本

  • Transformers 4.40.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.0

Quants

### 关于 Mistral-Large-Instruct-2407-AWQ 的详细介绍 #### 模型概述 Mistral-Large-Instruct-2407-AWQ 是一款基于量化技术优化的大规模预训练语言模型,旨在降低运行成本并提高推理效率。该版本采用了 AWQ (Activation-aware Weight Quantization) 技术,在保持较高精度的同时显著减少了计算资源需求[^1]。 #### 获取文档与下载链接 为了方便开发者获取最新资料,建议访问官方发布的教程页面以及魔搭社区中的 Hugging Face 镜像站点来查找详细的安装指南和技术文档。这些平台通常会提供最全面的说明和支持材料[^3]。 ```bash # 访问HuggingFace镜像站获取更多详情 https://hf-mirror.com/ ``` #### 使用方法简介 对于希望快速上手此模型的应用场景而言,可以通过 OpenWebUI 工具实现一键部署功能。这使得即使是不具备深厚技术背景的人也能轻松完成配置工作。具体操作流程可参照相关视频教程了解每一步骤的具体实施细节[^2]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "mistral-large-instruct-2407-awq" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) input_text = "<|user|>\nWhat is the capital of France?<|end|>" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值