信息论的基本概念(自信息,条件熵,联合熵,互信息,条件互信息)

大概是你见过最详细最靠近数学方式理解熵系列的博客。
目前内容有信息量,自信息,条件熵,联合熵,互信息,条件互信息。

自信息

香农当时希望自信息这个概念要满足如下几个条件:

1、一个百分百发生的事件不提供任何信息

2、这个事件越不可能发生,他的发生将会提供更多信息

3、如果两个独立事件是分开测量的,他们的自信息总和就是他们分别的自信息之和

这第三点也就是说满足下面这个式子(假设 I ( x ) I(x) I(x)代表x的信息量):
I ( x , y ) = I ( x ) + I ( y ) 式 1 I(x,y)=I(x)+I(y) \quad式1 I(x,y)=I(x)+I(y)1
我们知道,独立的两个事件一同发生的概率是
P ( x , y ) = P ( x )   ∗   P ( y ) 式 2 P(x,y)=P(x)\ * \ P(y)\quad 式2 P(x,y)=P(x)  P(y)2
根据第一点和第二点我们知道,自信息是一个和事件发生概率有关的数学量,我们可以假设成如下形式
I ( x ) = f ( P ( x ) ) I(x)=f(P(x)) I(x)=f(P(x))
那么要满足式1和式2,最合适的 f ( ) f() f()就是 l o g ( ) log() log()函数,因此我们得到了如下关于自信息的定义
I ( x ) = − l o g P ( x ) I(x)=-logP(x) I(x)=logP(x)
我们知道log是个定义域内单调递增的函数,所以为了满足自信息随着概率升高递减,在前面补上个负号,这也是香农1、2的定义所隐含的。

这个log的底数我们是不确定的,如果底数是2,这个自信息的单位就是"bit"或者"shannon";如果是自然对数e,就是“nat”(nature缩写);如果底数是10,单位就是“hartleys”或者代表十进制数的“digits”,有时候也可以写成“dits”。

正式的,因为负号可以提到log里面,所以还有一个形式(第二个等式)
I ( x ) = − l o g P ( x ) = l o g ( 1 P ( x ) ) I(x)=-logP(x)=log(\frac{1}{P(x)}) I(x)=logP(x)=log(P(x)1)

(香农)熵

香农熵就被定义成如下形式
H ( X ) = ∑ x − P ( x ) l o g P ( x ) = ∑ x P ( x ) I ( x ) = E [ I ( x ) ] H(X)=\sum_x-P(x)logP(x)\\=\sum_xP(x)I(x) \\=E[I(x)] H(X)=xP(x)logP(x)=xP(x)I(x)=E[I(x)]
上面第三个等式,我们知道关于随机变量x的概率分布期望就是 ∑ k = 1 + ∞ x k P ( x k ) \sum_{k=1}^{+\infin}x_{k}P(x_{k}) k=1+xkP(xk)

,是不是就能感觉到熵其实就是信息量的期望。

特性:

  1. 连续性
    该量度应连续,概率值小幅变化只能引起熵的微小变化。
  2. 对称性
    符号xi重新排序后,该量度应不变。如
    H n ( p 1 , p 2 . . ) = H n ( p 2 , p 1 . . . ) H_n(p_1,p_2..)=H_n(p_2,p_1...) Hn(p1,p2..)=Hn(p2,p1...)
    3.极值性
    当所有事件等概率发生,熵达到最大值(因为非常不确定谁会发生)
    H n ( p 1 , p 2 . . . ) ≤ H n ( 1 n , 1 n . . . ) = log ⁡ b n , H 后 的 下 标 代 表 事 件 数 H_n(p_1,p_2...)\le H_n(\frac{1}{n},\frac{1}{n}...)=\log_b{n},H后的下标代表事件数 Hn(p1,p2...)Hn(n1,n1...)=logbnH
    这个性质其实就是要证明下式,该式子的证明可通过琴生不等式证明
    待证明的式子
    根据琴生不等式,即当函数是凸函数时,总有在这里插入图片描述等概率事件的熵应随符号的数量增加。这个也很好理解,因为假如选项只有两个,正确答案是其中一个,概率都是等概率的也就是二分之一,此时答对的可能性是一半,但如果选项有四个,混乱程度就增加了,也就是说
    log ⁡ b n ≤ log ⁡ b ( n + 1 ) = H n + 1 ( 1 n + 1 , 1 n + 1 . . . . ) \log_b{n}\le \log_b(n+1)=H_{n+1}(\frac{1}{n+1},\frac{1}{n+1}....) logbnlogb(n+1)=Hn+1(n+11,n+11....)
    增减一概率为零的事件不改变熵:在这里插入图片描述

联合熵

联合熵是一个变量集合不确定性的度量。

被定义为
H ( X , Y ) = − ∑ x ∑ y P ( x , y ) l o g P ( x , y ) H(X,Y)=-\sum_x\sum_yP(x,y)logP(x,y) H(X,Y)=xyP(x,y)logP(x,y)
x和y是X和Y分布里的一个特定值,P(x,y)就是联合概率。

如果变量数更多,那么定义可以延伸成以下形式。
H ( X 1 , . . . , X n ) = − ∑ x 1 . . . ∑ x n P ( x 1 . . . x n ) l o g P ( x 1 . . . x n ) H(X_1,...,X_n)=-\sum_{x_1}...\sum_{x_n}P(x_1...x_n)logP(x_1...x_n) H(X1,...,Xn)=x1...xnP(x1...xn)logP(x1...xn)
性质:

1.非负性。因为每个log项都是小于0的,所以加合也小于0,取反非负。

2.大于等于任何一个变量的独立熵
H ( X 1 . . . X N ) ≥ m a x { H ( X 1 ) , . . H ( X N ) } H(X_1...X_N)≥max\{H(X_1),..H(X_N)\} H(X1...XN)max{H(X1),..H(XN)}
3.小于等于每个变量的独立熵合
H ( X , Y ) ≤ H ( X ) + H ( Y ) H(X,Y)≤H(X)+H(Y) H(X,Y)H(X)+H(Y)

4.连锁法则
H ( X 1 , X 2 . . X n ) = ∑ i = 1 n H ( X i ∣ X 1 , . . . X i − 1 ) H(X_1,X_2..X_n)=\sum_{i=1}^{n}H(X_i|X_1,...X_{i-1}) H(X1,X2..Xn)=i=1nH(XiX1,...Xi1)
用归纳法可以证明
H ( X 1 , . . . X m , X m + 1 ) = H ( X 1 , . . X m ) + H ( X m + 1 ∣ X 1 . . . X m ) [ 这 是 因 为 对 m = 2 时 已 经 证 明 过 了 , 下 面 条 件 熵 的 部 分 ] = ∑ i = 1 m H ( X i ∣ X 1 . . X i − 1 ) + H ( X m + 1 ∣ X 1 . . . X m ) [ 假 设 对 n = m 时 成 立 ] = ∑ i = 1 m + 1 H ( X i ∣ X 1 , . . . X i − 1 ) [ 对 n = m + 1 也 成 立 ] {\begin{aligned}H(X_1,...X_m,X_{m+1})&=H(X_1,..X_m)+H(X_{m+1}|X_1...X_m)\quad[这是因为对m=2时已经证明过了,下面条件熵的部分]\\&=\sum_{i=1}^{m}H(X_i|X_1..X_{i-1})+H(X_{m+1}|X_1...X_m)\quad[假设对n=m时成立]\\&=\sum_{i=1}^{m+1}H(X_i|X_1,...X_{i-1})\quad[对n=m+1也成立]\end{aligned}} H(X1,...Xm,Xm+1)=H(X1,..Xm)+H(Xm+1X1...Xm)[m=2]=i=1mH(XiX1..Xi1)+H(Xm+1X1...Xm)[n=m]=i=1m+1H(XiX1,...Xi1)[n=m+1]

条件熵

假设另一个随机变量X的值已知,条件熵(或模糊性)量化描述随机变量Y的结果所需的信息量。
H ( Y ∣ X ) = ∑ x p ( x ) H ( Y ∣ X = x ) [ 定 义 如 此 ] = − ∑ X , Y P ( x , y ) l o g P ( x , y ) P ( x ) [ 这 里 的 推 导 略 了 , 大 致 就 是 按 全 概 率 的 思 想 把 H ( Y ∣ X ) 展 开 ] \begin{aligned}H(Y|X)=&\sum_xp(x)H(Y|X=x) \quad[定义如此] \\=&-\sum_{X,Y}P(x,y)log\frac{P(x,y)}{P(x)}\quad[这里的推导略了,大致就是按全概率的思想把H(Y|X)展开]\end{aligned} H(YX)==xp(x)H(YX=x)[]X,YP(x,y)logP(x)P(x,y)[HYX]
也可以和联合熵做一个联系:
H ( Y ∣ X ) = H ( X , Y ) − H ( X ) [ 这 就 是 上 面 说 的 证 明 , 稍 微 移 项 一 下 就 好 ] H(Y|X)=H(X,Y)-H(X) \quad[这就是上面说的证明,稍微移项一下就好] H(YX)=H(X,Y)H(X)[]
这个推导过程如下:
原 式 = − ∑ X , Y P ( x , y ) l o g P ( x , y ) P ( x ) = − ∑ X , Y P ( x , y ) [ l o g P ( x , y ) − l o g P ( x ) ] = − ∑ X , Y P ( x , y ) l o g P ( x , y ) + ∑ X P ( x ) l o g P ( x ) \begin{aligned}原式=&-\sum_{X,Y}P(x,y)log\frac{P(x,y)}{P(x)}\\=&-\sum_{X,Y}P(x,y)[logP(x,y)-logP(x)]\\=&-\sum_{X,Y}P(x,y)logP(x,y)+\sum_{X}P(x)logP(x)\end{aligned} ===X,YP(x,y)logP(x)P(x,y)X,YP(x,y)[logP(x,y)logP(x)]X,YP(x,y)logP(x,y)+XP(x)logP(x)
这个过程从第二个等式到第三个等式可能有点奇怪,右侧直接把
∑ X , Y P ( x , y ) l o g P ( x ) = > ∑ X P ( x ) l o g P ( x ) \sum_{X,Y}P(x,y)logP(x)=>\sum_{X}P(x)logP(x) X,YP(x,y)logP(x)=>XP(x)logP(x)
这个是全概率公式,可以看到每个 ( x , y ) (x,y) (x,y)都互不相容,其和为全集,所以有
P ( x ) = ∑ i ∞ P ( x y i ) P(x)=\sum_i^{\infin}P(xy_i) P(x)=iP(xyi)
性质:

1.当且仅当Y完全由X决定,条件熵为0(因为不需要提供任何信息了)

2.当且仅当Y和X独立,条件熵等于分子独立熵

3.连锁法则
H ( X 1 , X 2 . . . X n ∣ Y ) = ∑ i = 1 n H ( X i ∣ X 1 . . . X i − 1 , Y ) 【 下 面 几 个 等 式 是 证 明 】 = H ( X 1 , . . . X n , Y ) − H ( Y ) = H ( ( X 1 , Y ) . . . X n ) − H ( Y ) = H ( X 1 , Y ) − H ( Y ) + ∑ i = 2 n H ( X i ∣ X 1 . . . X i − 1 , Y ) [ 熵 的 连 锁 , 移 项 ] = H ( X 1 ∣ Y ) + ∑ i = 2 n H ( X i ∣ X 1 . . . X i − 1 , Y ) 证 毕 \begin{aligned}H(X_1,X_2...X_n|Y)=&\sum_{i=1}^nH(X_i|X_1...X_{i-1},Y)【下面几个等式是证明】 \\=&H(X_1,...X_n,Y)-H(Y) \\=&H((X_1,Y)...X_n)-H(Y) \\=&H(X_1,Y)-H(Y)+\sum_{i=2}^nH(X_i|X_1...X_{i-1},Y) \quad[熵的连锁,移项] \\=&H(X_1|Y)+\sum_{i=2}^nH(X_i|X_1...X_{i-1},Y)\\证毕 \end{aligned} H(X1,X2...XnY)=====i=1nH(XiX1...Xi1,Y)H(X1,...Xn,Y)H(Y)H((X1,Y)...Xn)H(Y)H(X1,Y)H(Y)+i=2nH(XiX1...Xi1,Y)[]H(X1Y)+i=2nH(XiX1...Xi1,Y)

4.贝叶斯法则
H ( Y ∣ X )   =   H ( X ∣ Y ) − H ( X ) + H ( Y ) {\displaystyle \mathrm {H} (Y|X)\,=\,\mathrm {H} (X|Y)-\mathrm {H} (X)+\mathrm {H} (Y)} H(YX)=H(XY)H(X)+H(Y)
证明
H ( Y ∣ X ) = H ( X , Y ) − H ( X ) H ( X ∣ Y ) = H ( Y , X ) − H ( Y ) 对 称 性 : H ( X , Y ) = H ( Y , X ) {\displaystyle \mathrm {H} (Y|X)=\mathrm {H} (X,Y)-\mathrm {H} (X)}\\ {\displaystyle \mathrm {H} (X|Y)=\mathrm {H} (Y,X)-\mathrm {H} (Y)} \\对称性: {\displaystyle \mathrm {H} (X,Y)=\mathrm {H} (Y,X)} H(YX)=H(X,Y)H(X)H(XY)=H(Y,X)H(Y)H(X,Y)=H(Y,X)
用第一条等式减第二条等式就得到了贝叶斯法则

其他的性质
H ( Y ∣ X ) ≤ H ( Y ) H ( X , Y ) = H ( X ∣ Y ) + H ( Y ∣ X ) + I ⁡ ( X ; Y ) , H ( X , Y ) = H ( X ) + H ( Y ) − I ⁡ ( X ; Y ) ,   I ⁡ ( X ; Y ) ≤ H ( X ) , {\displaystyle {\begin{aligned}\mathrm {H} (Y|X)&\leq \mathrm {H} (Y)\\\mathrm {H} (X,Y)&=\mathrm {H} (X|Y)+\mathrm {H} (Y|X)+\operatorname {I} (X;Y),\qquad \\\mathrm {H} (X,Y)&=\mathrm {H} (X)+\mathrm {H} (Y)-\operatorname {I} (X;Y),\,\\\operatorname {I} (X;Y)&\leq \mathrm {H} (X),\end{aligned}}} H(YX)H(X,Y)H(X,Y)I(X;Y)H(Y)=H(XY)+H(YX)+I(X;Y),=H(X)+H(Y)I(X;Y),H(X),
第一条就不用多说了,知道别的分布总比不知道要好,所以左边需要的信息不会大于右边。也可以数学证明,这里不证明了。

剩下三条的 I ( X ; Y ) I(X;Y) I(X;Y)是互信息,等等讲,不着急。

互信息

根据熵的连锁规则,有
H ( X , Y ) = H ( X ) + H ( Y ∣ X ) = H ( Y ) + H ( X ∣ Y ) H(X,Y)=H(X)+H(Y|X)=H(Y)+H(X|Y) H(X,Y)=H(X)+H(YX)=H(Y)+H(XY)
所以整理可得
H ( X ) − H ( X ∣ Y ) = H ( Y ) − H ( Y ∣ X ) H(X)-H(X|Y)=H(Y)-H(Y|X) H(X)H(XY)=H(Y)H(YX)
这个差就叫做X和Y的互信息,记做 I ( X ; Y ) I(X;Y) I(X;Y)

互信息的链规则:
I ( X 1 n ; Y ) = ∑ i = 1 n I ( X i ; Y ∣ X 1 , . . . X n − 1 ) I(X_{1n};Y)=\sum_{i=1}^nI(X_i;Y|X_{1},...X_{n-1}) I(X1n;Y)=i=1nI(Xi;YX1,...Xn1)
证明:
I ( X 1 n ; Y ) = H ( X 1 . . . X n ) − H ( X 1 , . . X n ∣ Y ) [ 互 信 息 定 义 ] = ∑ i = 1 n H ( X i ∣ X 1 . . . X i − 1 ) − ∑ i = 1 n H ( X i ∣ X 1 . . . X i − 1 , Y ) = ∑ i = 1 n [ H ( X i ∣ X 1 . . . X i − 1 ) − H ( X i ∣ X 1 . . . X i − 1 , Y ) ] [ 互 信 息 定 义 , 多 观 察 一 下 ] = ∑ i = 1 n I ( X i ; Y ∣ X 1 , . . . X n − 1 ) \begin{aligned}I(X_{1n};Y)=&H(X_1...X_n)-H(X_1,..X_n|Y)\quad [互信息定义] \\=&\sum_{i=1}^nH(X_i|X_1...X_{i-1})-\sum_{i=1}^nH(X_i|X_1...X_{i-1},Y) \\=&\sum_{i=1}^n[H(X_i|X_1...X_{i-1})-H(X_i|X_1...X_{i-1},Y)] \quad[互信息定义,多观察一下] \\=&\sum_{i=1}^nI(X_i;Y|X_{1},...X_{n-1}) \end{aligned} I(X1n;Y)====H(X1...Xn)H(X1,..XnY)[]i=1nH(XiX1...Xi1)i=1nH(XiX1...Xi1,Y)i=1n[H(XiX1...Xi1)H(XiX1...Xi1,Y)][]i=1nI(Xi;YX1,...Xn1)
条件互信息的链规则:
I ( X 1 n ; Y ∣ Z ) = ∑ i = 1 n I ( X i ; Y ∣ X 1 , . . . X n − 1 , Z ) I(X_{1n};Y|Z)=\sum_{i=1}^nI(X_i;Y|X_{1},...X_{n-1},Z) I(X1n;YZ)=i=1nI(Xi;YX1,...Xn1,Z)
证明和互信息链规则很像,其实就是要理解"|“和”;"的结合方式是
I ( X ; Y ∣ Z ) = I ( ( X ; Y ) ∣ Z ) = H ( X ∣ Z ) = H ( X ∣ Y , Z ) I(X;Y|Z)=I((X;Y)|Z)=H(X|Z)=H(X|Y,Z) I(X;YZ)=I((X;Y)Z)=H(XZ)=H(XY,Z)
然后按着上面的互信息链证明即可

  • 12
    点赞
  • 45
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值