脑电时频分析II:时频分析

本文介绍了脑电时频分析的重要性,探讨了傅里叶变换、短时傅里叶变换(STFT)的局限性,并详细阐述了小波变换的原理,尤其是Morlet小波变换的实现过程。傅里叶变换适用于平稳信号,但无法反映时间变化;STFT解决了部分问题,但窗口固定;小波变换则提供了自适应的时间-频率分辨率,适合非稳态信号分析。
摘要由CSDN通过智能技术生成
前言:为什么需要做时频分析
  • 脑电信号为非平稳信号,不能直接使用傅里叶变换进行操作
  • 时频分析将连续数据划分为一个个小片再做傅里叶变换
  • 谱分析不能反映各个频段能量随时间的变化
1、时频分析的原理——卷积(Convolution)

上次提到的谱分析的原理是将需要处理的信号跟kernel函数进行点积处理,这样就能得到谱分析的结果,但是时频分析的是卷积
其实和点积有相同的原理,只不过时频分析需要得到随时间变化的信息,所以需要这个kernel函数随着时间,不断的往前推进, 都做一个点积,这个流程就是一个卷积,但是因为是随着时间往前推进,在两端的地方难免存在一些信息的泄露,因此我们需要进行一些信息补充,称之为padding,用0补充,不影响原始结果,信息也不会泄露太多。
在这里插入图片描述

2、短时傅里叶变换(STFT)

短时傅里叶变换又称为窗口傅里叶变换,是傅里叶变换简单的一个扩展,主要就是解决在谱分析中傅里叶的两个局限性,用于处理非平稳信号和随时间变换的power值的变化
在这里插入图片描述
短时傅里叶变换的原理是认为我们框选的一小部分信号(图中黄色

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

行秋即离

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值