脑电信号处理与特征提取——5.频谱分析和时频分析(张治国)

目录

五、频谱分析和时频分析

5.1 频谱估计

5.1.1 基本概念

5.1.2 频谱估计方法:周期图

5.1.3 频谱估计方法:Welch法

5.1.4 频谱估计方法的比较

5.1.5 频谱特征提取 

5.2 时频分析

5.2.1 短时傅里叶变换

5.2.2 连续小波变换

5.3 事件相关同步化/去同步化


五、频谱分析和时频分析

静息态脑电:没有刺激的情况下。任务态脑电:有刺激、任务。

频谱分析:不包含时间信息。时频分析:时间+频率 联合的方式。

5.1 频谱估计

5.1.1 基本概念

时间序列信号:例如在某通道连续记录的脑电信号,可以在时间域中表征为信号幅度(或其他量值)相对于时间的变化,也可以在频率域中表征为信号功率(或其他量值)沿频率变化的分布。

频率:描述振荡波形在单位时间内周期活动的基本参数。单位是赫兹(HZ),即每秒一个周期。

频谱:时序信号的功率、幅度或相位等在频率域沿频率的分布曲线。

频谱估计:将时域信号变换到频域频谱的估计方法,目的是观察对应周期的频率峰值以检测信号周期性。

选取采样率时候一定要选择最感兴趣的频率的两倍。

5.1.2 频谱估计方法:周期图

因为超低频是没有意义的,但是会削弱其他的波,如右上角图。所以加个log,然后变成下面的图。

5.1.3 频谱估计方法:Welch法

加窗的目的是:强调中间的信号,忽略掉两边的信号。

加窗后,再将每一段的周期图平均相加。

可以看出周期图的方差很大;Welch法波形很突出,能够得到一个比较平滑的功率谱。 

5.1.4 频谱估计方法的比较

5.1.5 频谱特征提取 

频谱量化

5.2 时频分析

 

5.2.1 短时傅里叶变换

5.2.2 连续小波变换

5.3 事件相关同步化/去同步化

### 使用EEGLAB进行频谱特征提取 #### 安装启动 EEGLAB 为了使用 EEGLAB 进行(EEG)频谱特征提取,需先安装并启动该软件。确保 MATLAB 已正确配置环境变量以便调用 EEGLAB 函数库[^4]。 #### 导入数据集 通过 `File` 菜单中的选项加载 EEG 数据文件到工作区中。支持多种格式的数据导入,包括 EDF, BDF 其他常见生物信号存储标准。一旦完成读取操作,则可以在后续步骤里针对这些记录执行各种处理流程[^2]。 #### 预处理阶段 在正式开展频域特性挖掘之前,通常要经历一系列必要的预处理措施来改善原始波形质量: - **去噪**:去除工频干扰其他可能存在的伪迹; - **重参考**:调整各导联间的相对位置关系以消除共模噪声影响; - **滤波器应用**:设定合适的带通范围限制频率响应区间; 上述过程可通过图形界面交互方式轻松实现,亦可编写脚本来自动化整个流水线作业。 #### 执行傅立叶变换获得功率谱密度估计 利用内置命令计算每条时间序列对应的幅度平方平均值作为 PSD 表征指标之一。具体而言,在工具栏找到 “Spectral analysis” 下拉菜单里的 "New time/frequency transform..." 功能项,按照提示设置参数后提交任务请求即可得到所需的结果图表展示[^3]。 ```matlab % 计算PSD示例代码片段 spectopo( dataset , 'psd' ); ``` 此函数会自动选取当前选中的试验组别,并依据指定方法(如 Welch’s 方法)估算出各个时刻点上的瞬态能量分布情况,最终形成二维热力映射供进一步解读分析之用。 #### 可视化结果呈现 除了常规的折线统计图外,还可以借助三维表面投影或者地形轮廓描绘等形式直观展现不同状态下大区域活动强度差异对比效果。特别地,“Channel location > By number”的绘图模式允许用户按编号顺序排列所有监测位点的位置布局,从而更清晰地观察局部变化趋势及其空间关联性特点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值