强化学习(二)——动态规划

本文深入探讨了强化学习中的动态规划方法,包括预测和控制两个方面。在预测阶段,介绍了策略评估(Iterative Policy Evaluation)的概念,通过迭代贝尔曼期望方程求解策略的状态价值函数vπ。在控制阶段,讲解了策略迭代(Policy Iteration)和价值迭代(Value Iteration)算法,前者结合策略评估和改进以找到最优策略,后者则通过优化迭代过程直接获取最优价值函数v∗及对应策略π∗。最后,对比了两种迭代方法的异同,表明它们都能得到相同的最优策略。
摘要由CSDN通过智能技术生成

Reference

[1] https://github.com/datawhalechina/easy-rl
[2] David_Silver: https://www.youtube.com/watch?v=Nd1-UUMVfz4&t=1113s

1. 预测(Prediction)

定义
输入策略和MDP五元组,输出策略的状态价值函数 v π v_\pi vπ
在这里插入图片描述

1.1 策略评估(Iterative Policy Evaluation)

(1)定义
一种预测方法。通过重复迭代贝尔曼期望方程,直至方程收敛,来获得状态价值函数 v π v_\pi vπ
在这里插入图片描述
(2)举例
在这里插入图片描述在这里插入图片描述

2. 控制(Control)

(1)定义
输入MDP五元组,输出最优策略 π ∗ \pi_* π和最优价值函数 v ∗ v_* v
在这里插入图片描述

2.1 策略迭代(Policy Iteration)

(1)定义
策略迭代由策略评估(P

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冠long馨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值