1*1的卷积核 降维和升维的妙用

使用不同大小的卷积核能有效减少参数数量,同时增强图像特征提取和跨通道信息交互。通过1x1、3x3卷积的组合,既能降低计算复杂度,又能保持非线性。例如,通过计算,相比于全连接层,卷积层减少了大量参数,如从1179648降至69632,优化了模型效率。
摘要由CSDN通过智能技术生成

使用三个不同大小的卷积核主要是为了减少参数的数量。

1.首先是卷积核的数量问题
2.其次是参数数量的计算:
3.增加跨通道信息的交互和增加非线性

1.首先是卷积核的数量问题

因为一张图片可能有很多特征,所以可能需要学习多个卷积核用来提取图像特征。
在这里插入图片描述

图中不同颜色代表不同的特征,需要学习对应数量的卷积核进行特征提取。

对于灰度图像,图像为2D
例如一个图像大小是5×5,
有一个3×3的卷积核对着图像进行卷积,步长为1,卷积结束后生成一个3×3的矩阵。
如果有2组卷积核对着图像卷积,就会生成2个3×3的矩阵。
同理有多少组卷积核对图像卷积就有多少个矩阵。
这个叫做通道。

对于RGB图像,图像为3维
若要提取2个特征,可以设置2个3维卷积核进行特征提取,提取结果为2通道的feature map,2个通道互相独立,代表着不同卷积核提取的不同特征。
在这里插入图片描述

2.其次是参数数量的计算:

  1. 概念图
    进行卷积处理的卷积通道数默认和输入图像的通道数相等。
    比如输入图像维度为256,进行特征提取的卷积核也默认是256维。
    若设定输出64个特征,那么就一共有64个256维的卷积核用来提取特征,即提取特征的输出通道数为64,输出64个feature map。
    在这里插入图片描述

  2. 运算过程
    第一个1x1的卷积把256维channel降到64维,然后在最后通过1x1卷积恢复,参数数目:1x1x256x64 + 3x3x64x64 + 1x1x64x256 = 69632,全连接层(左图)就是两个3x3x256的卷积,参数数目: 3x3x256x256x2 = 1179648,差了16.94倍。
    在这里插入图片描述

3. 增加跨通道信息的交互和增加非线性

如果卷积的输出输入都只是一个平面,那么1x1卷积核并没有什么意义,它是完全不考虑像素与周边其他像素关系。 但卷积的输出输入是长方体,所以1x1卷积实际上是对每个像素点,在不同的channels上进行线性组合(信息整合),且保留了图片的原有平面结构,调控depth,从而完成升维或降维的功能。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值