cnn卷积核channel,数量,1*1卷积核降维原理

本文探讨了CNN卷积层中的卷积核通道(channel)与数量的区别,强调卷积核的channel需与输入图像的channel一致。通过1x1卷积的例子解释了降维的原理,指出降维是通过改变filter的个数实现,而channel保持不变。最后提到了Tensorflow中filter参数的设置,并提醒读者基础知识的重要性。
摘要由CSDN通过智能技术生成

cnn卷积

众所周知,cnn最重要的就是卷积层和池化层,对于卷积层中,通过使用卷积核与原图像进行卷积操作,降低数据量方便计算。卷积操作为:
csdn其他大佬的图片直接拿来用
通过上述操作可以使大家清晰的看到卷积操作,但是卷积核的处理非常重要,那么卷积核的channel以及个数有什么区别呢?以下是我通过借阅别的大佬的博客做出如下总结:

channel

卷积核的channe要与上层中输入的channel数保持一致,因为只有channel数量相同时才能进行卷积操作,我当初就是因为没有理解卷积操作,不理解channel和个数的原因导致不理解如何计算卷积。言归正传。
上图:
自己用ipad画的,字丑见谅
由图中可得,当输入的channel数为224时,卷积核的通道数也应该为224,(由于担心某些同学可能和我有一样的陷入局部最优解,特给出新的最优化模型以达到全局最优解,开玩笑开玩笑,hhh)
在这里插入图片描述
当图像是一维时,即输入的

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值