卷积核channel和数量的区别
cnn卷积
众所周知,cnn最重要的就是卷积层和池化层,对于卷积层中,通过使用卷积核与原图像进行卷积操作,降低数据量方便计算。卷积操作为:
通过上述操作可以使大家清晰的看到卷积操作,但是卷积核的处理非常重要,那么卷积核的channel以及个数有什么区别呢?以下是我通过借阅别的大佬的博客做出如下总结:
channel
卷积核的channe要与上层中输入的channel数保持一致,因为只有channel数量相同时才能进行卷积操作,我当初就是因为没有理解卷积操作,不理解channel和个数的原因导致不理解如何计算卷积。言归正传。
上图:
由图中可得,当输入的channel数为224时,卷积核的通道数也应该为224,(由于担心某些同学可能和我有一样的陷入局部最优解,特给出新的最优化模型以达到全局最优解,开玩笑开玩笑,hhh)
当图像是一维时,即输入的