为什么要分别使用1*1,3*3,1*1的卷积核进行降维和升维

使用三个不同大小的卷积核主要是为了减少参数的数量。

1.首先是卷积核的数量问题

因为一张图片可能有很多特征,所以可能需要学习多个卷积核用来提取图像特征。

图中不同颜色代表不同的特征,需要学习对应数量的卷积核进行特征提取。

对于灰度图像,图像为2D
例如一个图像大小是5×5,
有一个3×3的卷积核对着图像进行卷积,步长为1,卷积结束后生成一个3×3的矩阵。
如果有2组卷积核对着图像卷积,就会生成2个3×3的矩阵。
同理有多少组卷积核对图像卷积就有多少个矩阵。
这个叫做通道。

对于RGB图像,图像为3维
若要提取2个特征,可以设置2个3维卷积核进行特征提取,提取结果为2通道的feature map,2个通道互相独立,代表着不同卷积核提取的不同特征。
在这里插入图片描述

2.其次是参数数量的计算:

  1. 概念图
    进行卷积处理的卷积通道数默认和输入图像的通道数相等。
    比如输入图像维度为256,进行特
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值