使用三个不同大小的卷积核主要是为了减少参数的数量。
1.首先是卷积核的数量问题
因为一张图片可能有很多特征,所以可能需要学习多个卷积核用来提取图像特征。
图中不同颜色代表不同的特征,需要学习对应数量的卷积核进行特征提取。
对于灰度图像,图像为2D
例如一个图像大小是5×5,
有一个3×3的卷积核对着图像进行卷积,步长为1,卷积结束后生成一个3×3的矩阵。
如果有2组卷积核对着图像卷积,就会生成2个3×3的矩阵。
同理有多少组卷积核对图像卷积就有多少个矩阵。
这个叫做通道。
对于RGB图像,图像为3维
若要提取2个特征,可以设置2个3维卷积核进行特征提取,提取结果为2通道的feature map,2个通道互相独立,代表着不同卷积核提取的不同特征。
2.其次是参数数量的计算:
- 概念图
进行卷积处理的卷积通道数默认和输入图像的通道数相等。
比如输入图像维度为256,进行特