混合背包问题

N N N 种物品和一个容量是 V V V 的背包。

物品一共有三类:

  • 第一类物品只能用1次(01背包);
  • 第二类物品可以用无限次(完全背包);
  • 第三类物品最多只能用 s i s_i si 次,每种体积是 v i v_i vi,价值是 w i w_i wi。(多重背包)

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大.输出最大价值。

这个就算之前三种背包问题的综合问题了吧 (大概,可能,也许,应该,差不多)

在实际上,多重背包的问题就是01背包的拓展,那么就可以将多重背包转化为 l o g 2 S log_2S log2S 个01背包。将三种背包问题转化为两种最基本的背包。

#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
#define MAX 1010

using namespace std;

typedef struct Thing
{
	int v;
	int w;
	int s;
}Thing;

vector<Thing> things;
int f[MAX];
int N, V;

int main()
{
	cin >> N >> V;
	for (int i = 0; i < N; i++)
	{
		int v, w, s;
		cin >> v >> w >> s;
		if (s < 0)things.push_back({ v,w,-1 });         //01背包
		else if (s == 0)things.push_back({ v,w,0 });    //完全背包
		else                                         //多重背包
		{
			for (int k = 1; k <= s; k *= 2)
			{
				s -= k;
				things.push_back({ v * k,w * k,-1 });    
			}
			if (s > 0)
			{
				things.push_back({ v * s,w * s,-1 });
			}
		}                                        //将多重背包转化为01背包
	}
	for (auto thing : things)
	{ 
		if (thing.s < 0)                   //01背包当01背包做
		{
			for (int j = V; j >= thing.v; j--) f[j] = max(f[j], f[j - thing.v] + thing.w);
		}
		else                               //完全背包当完全背包做
		{
			for (int j = thing.v; j <= V; j++)f[j] = max(f[j], f[j - thing.v] + thing.w);
		}
	}

	cout << f[V] << endl;

	return 0;
}

对于背包问题的基本模型大概差不多了。后面就随缘去更了。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值