对pytorch的训练参数进行定点量化:
PS:只是模拟FPGA实现时的定点数量化计算过程(不支持反向传播训练)…
哪个大佬有好的量化方案,求给个连接,官网的pytorch量化训练教程看不懂,以后看懂了再更吧
1.建立模型
建立一个含有两个线性层的模型
import torch
import numpy as np
import torch.nn as nn
class FC(nn.Module):
def __init__(self, input_dim,hid_dim):
super().__init__()
self.fc1 = nn.Linear(input_dim, hid_dim)
self.fc2 = nn.Linear(input_dim, hid_dim)
def forward(self, input):
hidden = self.fc1(input) + self.fc2(input)
return hidden
model = FC(3,6) #初始化模型
2.查看模型参数
代码如下:
print(model) #查看模型含有哪些层(fc1,fc2)
print(model.fc1._parameters) #查看fc1有哪些参数(weight,bias)
print(model.fc1.weight.data) #调用参数
运行结果:
3.转换公式
原理如下:
代码如下:
def t1(a): #输入训练参数,输出量化后的训练参数
b = a.detach().numpy() #由于a是训练参数,requires_grad为True,因此不能直接用numpy函数操作,需转换
b = np.clip(b,-0.9995117187,0.9995117187) #0.9995117187是1 - (1/2)^11
b = np.round(b * 2048 + 0.5) / 2048 #2048是2^11
a.data = torch.from_numpy(b).data #得到最接近原始a的定点数
return a
def t2(a):
b = a.detach().numpy()
e = np.sign(b)
b = np.clip(np.round(np.log2(np.fabs(b))+0.4),-7,0) #得到最接近原始a的2的幂次方,不改变a的其他属性,因此只使用data属性
b = np.power(2,b) * e
a.data = torch.from_numpy(b).data
return a
#t1 12位定点量化,整数位数0,小数位数11,符号位1位
#t2 量化为2的幂次方,整数位数0,小数位数7,符号位1位
model.fc1.weight.data = t1(model.fc1.weight.data) #量化fc1和fc2层的weight矩阵
model.fc2.weight.data = t2(model.fc2.weight.data)
运行结果:
总结
提示:哪个大佬有好的量化方案,求给个连接,官网的pytorch量化训练教程看不懂,以后看懂了再更吧
官网教程:https://pytorch.org/docs/stable/quantization.html(英)
https://pytorch.apachecn.org/docs/1.4/88.html(中)