对pytorch的可训练参数进行定点量化(模拟FPGA加速神经网络计算过程):

本文介绍了如何在PyTorch中对模型参数进行定点量化,以模拟FPGA实现时的计算过程。首先,建立了一个包含两个线性层的简单模型,然后查看并展示了模型的参数。接着,提供了两个转换公式,t1用于12位定点量化,t2用于2的幂次方量化。通过这两个函数,分别对fc1和fc2层的权重进行了量化处理。这有助于理解模型量化的基本步骤,尽管不支持反向传播训练。
摘要由CSDN通过智能技术生成

对pytorch的训练参数进行定点量化:

PS:只是模拟FPGA实现时的定点数量化计算过程(不支持反向传播训练)…
哪个大佬有好的量化方案,求给个连接,官网的pytorch量化训练教程看不懂,以后看懂了再更吧



1.建立模型

建立一个含有两个线性层的模型

import torch
import numpy as np
import torch.nn as nn

class FC(nn.Module):
    def __init__(self, input_dim,hid_dim):
        super().__init__()
        self.fc1 = nn.Linear(input_dim, hid_dim)
        self.fc2 = nn.Linear(input_dim, hid_dim)
        
    def forward(self, input):
        hidden = self.fc1(input) + self.fc2(input)
        
        return hidden
model = FC(3,6)  #初始化模型

2.查看模型参数

代码如下:

print(model) #查看模型含有哪些层(fc1,fc2)
print(model.fc1._parameters) #查看fc1有哪些参数(weight,bias)
print(model.fc1.weight.data) #调用参数

运行结果:
model

model.fc1._parameters
model.fc1.weight.data


3.转换公式

原理如下:

量化

代码如下:

def t1(a):             #输入训练参数,输出量化后的训练参数
    b = a.detach().numpy() #由于a是训练参数,requires_grad为True,因此不能直接用numpy函数操作,需转换
    b = np.clip(b,-0.9995117187,0.9995117187) #0.9995117187是1 - (1/2)^11  
    b = np.round(b * 2048 + 0.5) / 2048    #2048是2^11
    a.data = torch.from_numpy(b).data     #得到最接近原始a的定点数
    return a


def t2(a):
    b = a.detach().numpy()         
    e = np.sign(b)
    b = np.clip(np.round(np.log2(np.fabs(b))+0.4),-7,0) #得到最接近原始a的2的幂次方,不改变a的其他属性,因此只使用data属性
    b = np.power(2,b) * e
    a.data = torch.from_numpy(b).data
    return a
#t1 12位定点量化,整数位数0,小数位数11,符号位1位
#t2 量化为2的幂次方,整数位数0,小数位数7,符号位1位
model.fc1.weight.data = t1(model.fc1.weight.data) #量化fc1和fc2层的weight矩阵
model.fc2.weight.data = t2(model.fc2.weight.data)

运行结果:
量化后参数

总结

提示:哪个大佬有好的量化方案,求给个连接,官网的pytorch量化训练教程看不懂,以后看懂了再更吧

官网教程:https://pytorch.org/docs/stable/quantization.html(英)
https://pytorch.apachecn.org/docs/1.4/88.html(中)

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮皮宽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值