向量组秩及其极大线性无关组求解浅析

向量组秩和极大线性无关组求解

问题来源阐述

线性代数课程中,在学习了向量组的线性相关性和向量组的秩后,一类常见的计算问题是给出向量组,求解其秩和极大线性无关组。课程中一般给出的方法都是以向量为列组成矩阵,对矩阵进行初等行变换,化为最简形或行阶梯型进行判断。

上述方法在理论解释上一般教材不是很详细,可能会存在以下几个问题让人产生疑惑:

  1. 列向量进行行变换的意义和最终能够找出极大线性无关组的原理?

  2. 为什么不能将向量按行组成矩阵进行行变换求解极大线性无关组和秩?

下文对上述两个问题给出解释。


对向量组进行定义,后面不再重复赘述

向量组 α 1 , α 2 , ⋯   , α m \alpha_{1}, \alpha_{2},\cdots,\alpha_{m} α1,α2,,αm ,其中 α i = ( α i 1 , α i 2 , ⋯   , α i n ) T \alpha_{i}=(\alpha_{i1},\alpha_{i2},\cdots,\alpha_{in})^{T} αi=(αi1,αi2,,αin)T 是一个n维列向量

问题1:列向量进行行变换的意义和确定极大线性无关组的原理

向量组 α 1 , α 2 , ⋯   , α m \alpha_{1}, \alpha_{2},\cdots,\alpha_{m} α1,α2,,αm 线性无关的定义为:存在m个不全为0的数 k 1 , k 2 , ⋯   , k m k_{1},k_{2},\cdots,k_{m} k1,k2,,km ,使得 k 1 α 1 + k 2 α 2 + ⋯ + k m α m = 0 k_{1}\alpha_{1}+k_{2}\alpha_{2}+\cdots+k_{m}\alpha_{m}=\bold0 k1α1+k2α2++kmαm=0 。(注意此处的 0 \bold 0 0 n n n 维向量)

将向量组 α 1 , α 2 , ⋯   , α m \alpha_{1}, \alpha_{2},\cdots,\alpha_{m} α1,α2,,αm 按列排列构成矩阵 A A A A = ( α 1 , α 2 , ⋯   , α m ) A=(\alpha_{1}, \alpha_{2},\cdots,\alpha_{m}) A=(α1,α2,,αm),令向量 k = ( k 1 , k 2 , ⋯   , k m ) T k=(k_{1},k_{2},\cdots,k_{m})^{T} k=(k1,k2,,km)T A k = k 1 α 1 + k 2 α 2 + ⋯ + k m α m Ak=k_{1}\alpha_{1}+k_{2}\alpha_{2}+\cdots+k_{m}\alpha_{m} Ak=k1α1+k2α2++kmαm,则向量组线性无关,等价于方程组 A k = 0 Ak=\bold0 Ak=0有非零解。

我们将 A k = 0 Ak=\bold0 Ak=0展开:

A k = ( α 11 α 21 ⋯ α m 1 ⋮ ⋮ ⋮ α 1 i α 2 i ⋯ α m i ⋮ ⋮ ⋮ α 1 j α 2 j ⋯ α m j ⋮ ⋮ ⋮ α 1 n α 2 n ⋯ α m n ) ( k 1 k 2 ⋮ k m ) = ( 0 ⋮ 0 ⋮ 0 ⋮ 0 ) Ak=\left( \begin{matrix} \alpha _{11}& \alpha _{21}& \cdots& \alpha _{m1}\\ \vdots& \vdots& & \vdots\\ \alpha _{1i}& \alpha _{2i}& \cdots& \alpha _{mi}\\ \vdots& \vdots& & \vdots\\ \alpha _{1j}& \alpha _{2j}& \cdots& \alpha _{mj}\\ \vdots& \vdots& & \vdots\\ \alpha _{1n}& \alpha _{2n}& \cdots& \alpha _{mn}\\ \end{matrix} \right) \left( \begin{array}{c} k_1\\ k_2\\ \vdots\\ k_m\\ \end{array} \right) =\left( \begin{array}{c} 0\\ \vdots\\ 0\\ \vdots\\ 0\\ \vdots\\ 0\\ \end{array} \right) Ak=α11α1iα1jα1nα21α2iα2jα2nαm1αmiαmjαmnk1k2km=0000

对于第 i i i和第 j j j行:

k 1 α i 1 + k 2 α i 2 + ⋯ + k m α i m = 0 ( 1 ) k_{1}\alpha_{i1}+k_{2}\alpha_{i2}+\cdots+k_{m}\alpha_{im}=0\enspace\enspace(1) k1αi1+k2αi2++kmαim=0(1)

k 1 α j 1 + k 2 α j 2 + ⋯ + k m α j m = 0 ( 2 ) k_{1}\alpha_{j1}+k_{2}\alpha_{j2}+\cdots+k_{m}\alpha_{jm}=0\enspace\enspace(2) k1αj1+k2αj2++kmαjm=0(2)

初等行变换——互换

互换 A A A中的 i i i j j j列后, A A A变换为矩阵 A ′ A^{'} A,由式(1)和(2)可得仍然满足 A ′ k = 0 A^{'}k=\bold0 Ak=0

A ′ k = ( α 11 α 21 ⋯ α m 1 ⋮ ⋮ ⋮ α 1 j α 2 j ⋯ α m j ⋮ ⋮ ⋮ α 1 i α 2 i ⋯ α m i ⋮ ⋮ ⋮ α 1 n α 2 n ⋯ α m n ) ( k 1 k 2 ⋮ k m ) = ( 0 ⋮ 0 ⋮ 0 ⋮ 0 ) A^{'}k=\left( \begin{matrix} \alpha _{11}& \alpha _{21}& \cdots& \alpha _{m1}\\ \vdots& \vdots& & \vdots\\ \alpha _{1j}& \alpha _{2j}& \cdots& \alpha _{mj}\\ \vdots& \vdots& & \vdots\\ \alpha _{1i}& \alpha _{2i}& \cdots& \alpha _{mi}\\ \vdots& \vdots& & \vdots\\ \alpha _{1n}& \alpha _{2n}& \cdots& \alpha _{mn}\\ \end{matrix} \right) \left( \begin{array}{c} k_1\\ k_2\\ \vdots\\ k_m\\ \end{array} \right) =\left( \begin{array}{c} 0\\ \vdots\\ 0\\ \vdots\\ 0\\ \vdots\\ 0\\ \end{array} \right) Ak=α11α1jα1iα1nα21α2jα2iα2nαm1αmjαmiαmnk1k2km=0000

初等行变换——倍乘

将矩阵 A A A中的第 i i i行倍乘常数 p p p后, A A A变换为矩阵 A ′ ′ A^{''} A,由式(1)和(2)可得仍然满足 A ′ ′ k = 0 A^{''}k=\bold0 Ak=0

A ′ ′ k = ( α 11 α 21 ⋯ α m 1 ⋮ ⋮ ⋮ p α 1 i p α 2 i ⋯ p α m i ⋮ ⋮ ⋮ α 1 j α 2 j ⋯ α m j ⋮ ⋮ ⋮ α 1 n α 2 n ⋯ α m n ) ( k 1 k 2 ⋮ k m ) = ( 0 ⋮ 0 ⋮ 0 ⋮ 0 ) A^{''}k=\left( \begin{matrix} \alpha _{11}& \alpha _{21}& \cdots& \alpha _{m1}\\ \vdots& \vdots& & \vdots\\ p\alpha _{1i}& p\alpha _{2i}& \cdots& p\alpha _{mi}\\ \vdots& \vdots& & \vdots\\ \alpha _{1j}& \alpha _{2j}& \cdots& \alpha _{mj}\\ \vdots& \vdots& & \vdots\\ \alpha _{1n}& \alpha _{2n}& \cdots& \alpha _{mn}\\ \end{matrix} \right) \left( \begin{array}{c} k_1\\ k_2\\ \vdots\\ k_m\\ \end{array} \right) =\left( \begin{array}{c} 0\\ \vdots\\ 0\\ \vdots\\ 0\\ \vdots\\ 0\\ \end{array} \right) Ak=α11pα1iα1jα1nα21pα2iα2jα2nαm1pαmiαmjαmnk1k2km=0000

初等行变换——加法

将矩阵 A A A中的第 j j j行加到第 i i i行, A A A变换为矩阵 A ′ ′ ′ A^{'''} A,由式(1)和(2)可得仍然满足 A ′ ′ ′ k = 0 A^{'''}k=\bold0 Ak=0

A ′ ′ ′ k = ( α 11 α 21 ⋯ α m 1 ⋮ ⋮ ⋮ α 1 i + α 1 j α 2 i + α 2 j ⋯ α m i + α m j ⋮ ⋮ ⋮ α 1 j α 2 j ⋯ α m j ⋮ ⋮ ⋮ α 1 n α 2 n ⋯ α m n ) ( k 1 k 2 ⋮ k m ) = ( 0 ⋮ 0 ⋮ 0 ⋮ 0 ) A^{'''}k=\left( \begin{matrix} \alpha _{11}& \alpha _{21}& \cdots& \alpha _{m1}\\ \vdots& \vdots& & \vdots\\ \alpha _{1i}+\alpha_{1j}& \alpha _{2i}+\alpha_{2j}& \cdots& \alpha _{mi}+\alpha_{mj}\\ \vdots& \vdots& & \vdots\\ \alpha _{1j}& \alpha _{2j}& \cdots& \alpha _{mj}\\ \vdots& \vdots& & \vdots\\ \alpha _{1n}& \alpha _{2n}& \cdots& \alpha _{mn}\\ \end{matrix} \right) \left( \begin{array}{c} k_1\\ k_2\\ \vdots\\ k_m\\ \end{array} \right) =\left( \begin{array}{c} 0\\ \vdots\\ 0\\ \vdots\\ 0\\ \vdots\\ 0\\ \end{array} \right) Ak=α11α1i+α1jα1jα1nα21α2i+α2jα2jα2nαm1αmi+αmjαmjαmnk1k2km=0000

三种初等行变换结果证明了,初等行变换不改变方程组 A k = 0 Ak=\bold0 Ak=0 的解,亦即不改变向量组 α 1 , α 2 , ⋯   , α m \alpha_{1},\alpha_{2},\cdots,\alpha_{m} α1,α2,,αm 的线性相关性,解释了列向量进行初等行变换的意义。 下面解释为何将 A A A变为行最简形后,即可判定出极大线性无关组。

假设最终 A A A变为了行最简形:

A → A ^ = ( 1 ⋯ ∗ ⋯ ∗ ∗ 0 ⋯ 1 ⋯ ∗ ∗ 0 ⋯ 0 ⋯ 1 ∗ ⋮ ⋮ ⋮ ⋮ 0 ⋯ 0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0 ) A\rightarrow \hat{A}=\left( \begin{matrix} 1& \cdots& *& \cdots& *& *\\ 0& \cdots& 1& \cdots& *& *\\ 0& \cdots& 0& \cdots& 1& *\\ \vdots& & \vdots& & \vdots& \vdots\\ 0& \cdots& 0& \cdots& 0& 0\\ 0& \cdots& 0& \cdots& 0& 0\\ \end{matrix} \right) \\ AA^=10000100010000

其中*代表任意值,矩阵 A ^ \hat{A} A^的秩等于向量组的秩,设秩为 r r r

选出矩阵中第 i i i行第一个列元素不为0对应的向量,一共有 r r r个。矩阵的其他列向量一定可以由这 r r r个向量表出。原因为此 r r r个矩阵线性无关,当加入一个向量时, r + 1 r+1 r+1个向量,秩为 r r r,则新加入向量一定可以被线性表出。

A ^ \hat{A} A^ A A A进行初等行变换来,且列向量位置并未改变,所以 A A A中与 A ^ \hat{A} A^对应位置的列向量可以构成向量组的一个极大线性无关组。

问题2:能否将向量按行构成矩阵进行行变换求极大线性无关组和秩

首先给出答案:其实是可以的。

向量组线性相关,即存在向量可以被线性表出,那么按行向量构成矩阵后,进行初等行变换,将行向量变为0向量的想法应该是可行的,为什么一般教材强调不行呢?其实是在做初等行变换的时候,最好不进行初等行变换中的互换,否则会导致向量组的顺序混乱。

这里以一个具体的例子来给大家解释,便于理解:

向量组为:

α 1 = ( 1 , 1 , 1 , 1 , 1 ) T , α 2 = ( 1 , 2 , 3 , 4 , 5 ) T , α 3 = ( 1 , 3 , 5 , 7 , 9 ) T , α 4 = ( 1 , 5 , 8 , 10 , 15 ) T , α 5 = ( 1 , 4 , 9 , 16 , 17 ) T \alpha_{1}=(1,1,1,1,1)^{T},\alpha_{2}=(1,2,3,4,5)^{T},\alpha_{3}=(1,3,5,7,9)^{T},\alpha_{4}=(1,5,8,10,15)^{T},\alpha_{5}=(1,4,9,16,17)^{T} α1=(1,1,1,1,1)T,α2=(1,2,3,4,5)T,α3=(1,3,5,7,9)T,α4=(1,5,8,10,15)T,α5=(1,4,9,16,17)T

将其按行向量构成矩阵为:

A = ( 1 1 1 1 1 1 2 3 4 5 1 3 5 7 9 1 5 8 10 15 1 4 9 16 17 ) A=\left( \begin{matrix} 1& 1& 1& 1& 1\\ 1& 2& 3& 4& 5\\ 1& 3& 5& 7& 9\\ 1& 5& 8& 10& 15\\ 1& 4& 9& 16& 17\\ \end{matrix} \right) A=11111123541358914710161591517

一种错误的求解方法为,进行初等行变换后(包括互换的初等行变换),可以得到:

A = ( 1 1 1 1 1 1 2 3 4 5 1 3 5 7 9 1 5 8 10 15 1 4 9 16 17 ) → A ^ = ( 1 0 − 1 − 2 − 3 0 1 2 3 4 0 0 1 3 2 0 0 0 0 0 0 0 0 0 0 ) A=\left( \begin{matrix} 1& 1& 1& 1& 1\\ 1& 2& 3& 4& 5\\ 1& 3& 5& 7& 9\\ 1& 5& 8& 10& 15\\ 1& 4& 9& 16& 17\\ \end{matrix} \right) \rightarrow \hat{A}=\left( \begin{matrix} 1& 0& -1& -2& -3\\ 0& 1& 2& 3& 4\\ 0& 0& 1& 3& 2\\ 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0\\ \end{matrix} \right) A=11111123541358914710161591517A^=1000001000121002330034200

这个时候错误思维是选出第1,2,3列,然后认为 α 1 , α 2 , α 3 \alpha_{1},\alpha_{2},\alpha_{3} α1,α2,α3为极大线性无关组,这里因为我们是按行向量构成的矩阵,按列来看是没有意义的(当然可以按列来算向量组的秩)。

正确的思维是观察行,行变换后不能化为0向量的可以选出来构成极大线性无关组。

将上面这个例子实例化操作一遍:

A = ( 1 1 1 1 1 1 2 3 4 5 1 3 5 7 9 1 5 8 10 15 1 4 9 16 17 ) ⟶ r i − r 1 i ≠ 1 ( 1 1 1 1 1 0 1 2 3 4 0 2 4 6 8 0 4 7 9 14 0 3 8 15 16 ) ⟶ r 3 − 2 r 2 r 4 − 4 r 2 r 5 − 3 r 2 ( 1 1 1 1 1 0 1 2 3 4 0 0 0 0 0 0 0 − 1 − 3 − 2 0 0 2 6 4 ) ⟶ r 5 + 2 r 4 ( 1 1 1 1 1 0 1 2 3 4 0 0 0 0 0 0 0 − 1 − 3 − 2 0 0 0 0 0 ) A=\left( \begin{matrix} 1& 1& 1& 1& 1\\ 1& 2& 3& 4& 5\\ 1& 3& 5& 7& 9\\ 1& 5& 8& 10& 15\\ 1& 4& 9& 16& 17\\ \end{matrix} \right) \underset{}{\overset{\begin{array}{c} r_i-r_1\\ i\ne 1\\ \end{array}}{\longrightarrow}}\left( \begin{matrix} 1& 1& 1& 1& 1\\ 0& 1& 2& 3& 4\\ 0& 2& 4& 6& 8\\ 0& 4& 7& 9& 14\\ 0& 3& 8& 15& 16\\ \end{matrix} \right) \\ \underset{}{\overset{\begin{array}{c} \begin{array}{c} r_3-2r_2\\ r_{4-}4r_2\\ \end{array}\\ r_5-3r_2\\ \end{array}}{\longrightarrow}}\left( \begin{matrix} 1& 1& 1& 1& 1\\ 0& 1& 2& 3& 4\\ 0& 0& 0& 0& 0\\ 0& 0& -1& -3& -2\\ 0& 0& 2& 6& 4\\ \end{matrix} \right) \underset{}{\overset{\begin{array}{c} r_5+2r_4\\ \\ \end{array}}{\longrightarrow}}\left( \begin{matrix} 1& 1& 1& 1& 1\\ 0& 1& 2& 3& 4\\ 0& 0& 0& 0& 0\\ 0& 0& -1& -3& -2\\ 0& 0& 0& 0& 0\\ \end{matrix} \right) A=11111123541358914710161591517rir1i=11000011243124781369151481416r32r2r44r2r53r21000011000120121303614024r5+2r41000011000120101303014020

最终可以确定向量 α 3 , α 5 \alpha_{3},\alpha_{5} α3,α5可以被线性表出,因此极大线性无关组为 α 1 , α 2 , α 4 \alpha_{1},\alpha_{2},\alpha_{4} α1,α2,α4


以上是对这个问题的简要分析,如有错误,敬请批评指正~

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值