神经网络入门(完结版)

神经网络的基本骨架

在这里插入图片描述

1. nn.Module的使用

  • 所有的模型都要继承 Module 类
  • 需要重写初始化函数和运算步骤函数

eg:

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):		# 继承父类Module 
    def __init__(self):		# 重写初始化函数
        super().__init__()		# 调用父类初始化
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):		# 神经网络的运算步骤--前向传播
        x = F.relu(self.conv1(x))	# x->卷积->非线性
        return F.relu(self.conv2(x))	# x->卷积->非线性

代码示例:

import torch
from torch import nn

class Kun(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        output = input+1	# 实现输出加1
        return output

kun = Kun()
x = torch.tensor(1.0)
output = kun(x)
print(output)   # tensor(2.)

2. 卷积

conv2可选参数

在这里插入图片描述

卷积计算过程示意:

在这里插入图片描述

import torch

# 输入图像(5*5)
input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]])  # 输入tensor数据类型的二维矩阵

# 卷积核
kernel = torch.tensor([[1, 2, 1],
                       [0, 1, 0],
                       [2, 1, 0]])


print(input.shape)
print(kernel.shape)
torch.Size([5, 5])
torch.Size([3, 3])

如果不调整尺寸会报错:Expected 3D(unbatched) or 4D(batched) input to conv2d, but got input of size: [5, 5]

所以需要调整

input = torch.reshape(input, (1, 1, 5, 5))
kernel = torch.reshape(kernel, (1, 1, 3, 3))
output = F.conv2d(input, kernel, stride=1)
print(output)

--------------------------------------------------------------------------
tensor([[[[10, 12, 12],
          [18, 16, 16],
          [13,  9,  3]]]])

stride可以选择移动的步长

output2 = F.conv2d(input, kernel, stride=2)
print(output2)
----------------------------------------------------------------------------
tensor([[[[10, 12],
          [13,  3]]]])

padding进行填充(默认填充0)

output3 = F.conv2d(input, kernel, stride=1, padding=1)
print(output3)
-----------------------------------------------------------------------------
tensor([[[[ 1,  3,  4, 10,  8],
          [ 5, 10, 12, 12,  6],
          [ 7, 18, 16, 16,  8],
          [11, 13,  9,  3,  4],
          [14, 13,  9,  7,  4]]]])

示例代码:

import torch
import torch.nn.functional as F
# 输入图像(5*5)
input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]])  # 输入tensor数据类型的二维矩阵

# 卷积核
kernel = torch.tensor([[1, 2, 1],
                       [0, 1, 0],
                       [2, 1, 0]])
# 调整输入的尺寸
# 如果不调整尺寸会报错
# Expected 3D(unbatched) or 4D(batched) input to conv2d, but got input of size: [5, 5]
input = torch.reshape(input, (1, 1, 5, 5))
kernel = torch.reshape(kernel, (1, 1, 3, 3))
# print(input.shape)    # torch.Size([1, 1, 5, 5])
# print(kernel.shape)   # torch.Size([1, 1, 3, 3])

output = F.conv2d(input, kernel, stride=1)
print(output)

output2 = F.conv2d(input, kernel, stride=2)
print(output2)

output3 = F.conv2d(input, kernel, stride=1, padding=1)
print(output3)
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("../dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)
dataloader = DataLoader(dataset, batch_size=64)


class Kun2(nn.Module):
    def __init__(self):     # 初始化
        super(Kun2, self).__init__()
        self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)  # 卷积层

    def forward(self, x):
        x = self.conv1(x)
        return x


# 初始化网络
kun = Kun2()
# print(kun)

writer = SummaryWriter("../logs")
step = 0
for data in dataloader:
    imgs, target = data
    output = kun(imgs)
    print(imgs.shape)
    print(output.shape)

    # torch.Size([64, 3, 32, 32])
    writer.add_images("input", imgs, step)
    # torch.Size([64, 6, 30, 30])
    # 报错:输出6个channel,系统不知道怎么显示.最粗暴的方法reshape输出
    # torch.Size([64, 6, 30, 30]) ->[**, 3, 30, 30]
    output = torch.reshape(output, (-1, 3, 30, 30))
    writer.add_images("output", output, step)

    step = step + 1

3. 最大池化的使用

池化的作用:减少数据量-> 训练更快

Maxpool最大池化/下采样

MaxUnpool 下采样

在这里插入图片描述

步长默认是kernel_size大小

ceil_model

  • true 不足会保留
  • false不足不会保留(默认)
import torch
from torch import nn
from torch.nn import MaxPool2d

# RuntimeError: "max_pool2d" not implemented for 'Long'处理:
# 添加数据类型dtype=torch.float32 转整型为浮点型
input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]], dtype=torch.float32
                     )

input = torch.reshape(input, (-1, 1, 5, 5))
print(input.shape)  # torch.Size([1, 1, 5, 5])


class Kun(nn.Module):
    def __init__(self):  # 初始化
        super(Kun, self).__init__()  # 父类进行继承
        self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)

    def forward(self, input):
        output = self.maxpool1(input)
        return output


# 创建神经网络
kun = Kun()
output = kun(input)
print(output)  # tensor([[[[2., 3.], [5., 1.]]]])

使用数据集

import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("../dataset", train=False, download=True,
                                       transform=torchvision.transforms.ToTensor())

dataloader = DataLoader(dataset, batch_size=64)


class Kun(nn.Module):
    def __init__(self):  # 初始化
        super(Kun, self).__init__()  # 父类进行继承
        self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)

    def forward(self, input):
        output = self.maxpool1(input)
        return output


# 创建神经网络
kun = Kun()

writer = SummaryWriter("../logs_maxpool")
step = 0
for data in dataloader:
    imgs, targets = data
    writer.add_images("input", imgs, step)
    output = kun(imgs)
    writer.add_images("output", output, step)
    step = step + 1

writer.close()

结果:

在这里插入图片描述

4. 非线性激活

  • RELU示例

CLASStorch.nn.ReLU(inplace=False)[SOURCE]

Applies the rectified linear unit function element-wise:

  • Parameters:

    inplace (bool) – can optionally do the operation in-place. Default: False

    • 是否对原变量进行替换
    • True进行变换
    • False保留原始数据input,返回变换值output

代码示例:

import torch
from torch import nn
from torch.nn import ReLU

input = torch.tensor([[1, -0.5],
                      [-1, 3]])

input = torch.reshape(input, (-1, 1, 2, 2))
print(input.shape)


class Kun(nn.Module):
    def __init__(self):
        super(Kun, self).__init__()
        self.relu1 = ReLU()

    def forward(self, input):
        output = self.relu1(input)
        return output


# 创建神经网络
kun = Kun()
output = kun(input)
print(output)

-------------------------------------
tensor([[[[1., 0.],
          [0., 3.]]]])
import torch
import torchvision
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

input = torch.tensor([[1, -0.5],
                      [-1, 3]])

input = torch.reshape(input, (-1, 1, 2, 2))
print(input.shape)

dataset = torchvision.datasets.CIFAR10("../dataset", train=False, download=True,
                                       transform=torchvision.transforms.ToTensor())

dataloader = DataLoader(dataset, batch_size=64)


class Kun(nn.Module):
    def __init__(self):
        super(Kun, self).__init__()
        self.sigmoid1 = Sigmoid()

    def forward(self, input):
        output = self.sigmoid1(input)
        return output


# 创建神经网络
kun = Kun()
step = 0
writer = SummaryWriter("../logs_relu")
for data in dataloader:
    imgs, target = data
    writer.add_images("input", imgs, global_step=step)
    output = kun(imgs)
    writer.add_images("output", output, global_step=step)
    step = step+1

writer.close()

结果
在这里插入图片描述

5. 线性层和其他层介绍

import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10("../dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)

dataloader = DataLoader(dataset, batch_size=64)

class Kun(nn.Module):
    def __init__(self):
        super(Kun, self).__init__()
        self.linear1 = Linear(196608, 10)

    def forward(self, input):
        output = self.linear1(input)
        return output

kun = Kun()


for data in dataloader:
    imgs, target = data
    print(imgs.shape)
    # output = torch.reshape(imgs, (1, 1, 1, -1))
    output = torch.flatten(imgs) # 同上句reshape,主要用于将数据摊平 变成一行
    print(output.shape)
    output = kun(output)
    print(output.shape)

6. 神经网络搭建实例

完成如下图所示神经网络的搭建

在这里插入图片描述

计算相应参数:

在这里插入图片描述

示例:(可使用Sequential来简化代码量)

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter


class Kun(nn.Module):
    def __init__(self):
        super(Kun, self).__init__()
        # self.conv1 = Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2)   # 新建卷积层1
        # self.maxpool1 = MaxPool2d(kernel_size=2)    # 池化
        # self.conv2 = Conv2d(in_channels=32, out_channels=32, kernel_size=5,padding=2)       # 新建卷积层2
        # self.maxpool2 = MaxPool2d(kernel_size=2)
        # self.conv3 = Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2)
        # self.maxpool3 = MaxPool2d(kernel_size=2)
        # self.flatten = Flatten()    # 将数据进行展平 64*4*4 =1024
        # self.linear1 = Linear(in_features=1024, out_features=64)
        # self.linear2 = Linear(64, 10)

        self.model1 = Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2),
            Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2),
            MaxPool2d(kernel_size=2),
            Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2),
            MaxPool2d(kernel_size=2),
            Flatten(), # 将数据进行展平 64*4*4 =1024
            Linear(in_features=1024, out_features=64),
            Linear(64, 10)
        )

    def forward(self, x):
        # x = self.conv1(x)
        # x = self.maxpool1(x)
        # x = self.conv2(x)
        # x = self.maxpool2(x)
        # x = self.conv3(x)
        # x = self.maxpool3(x)
        # x = self.flatten(x)
        # x = self.linear1(x)
        # x = self.linear2(x)

        x = self.model1(x)
        return x

# 实例化神经网络
kun = Kun()
# 对网络结构进行测试
input = torch.ones((64, 3, 32, 32))
output = kun(input)
print(output.shape)     # torch.Size([64, 10])

writer = SummaryWriter("../logs_seq")
writer.add_graph(kun, input)
writer.close()

结果示例:

在这里插入图片描述

7. 现有网络模型的使用及修改

import torchvision
from torch import nn

vgg16_false = torchvision.models.vgg16(pretrained=False)    # 不下载对应网络模型
vgg16_true = torchvision.models.vgg16(pretrained=True)

# print(vgg16_true)

# 是10分类数据集,但是vgg16是1000分类,所以要修改vgg16的参数out_features
train_true = torchvision.datasets.CIFAR10('../dataset', train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)

# 方法一:在最后classifier添加一层
vgg16_true.classifier.add_module('add_linear', nn.Linear(1000, 10))

print(vgg16_true)

# 方法二:直接修改
vgg16_false.classifier[6] = nn.Linear(4096, 10, True)
print(vgg16_false)

vgg16网络:

VGG(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU(inplace=True)
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU(inplace=True)
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (6): ReLU(inplace=True)
    (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (8): ReLU(inplace=True)
    (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace=True)
    (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (13): ReLU(inplace=True)
    (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (15): ReLU(inplace=True)
    (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (18): ReLU(inplace=True)
    (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (20): ReLU(inplace=True)
    (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (22): ReLU(inplace=True)
    (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (25): ReLU(inplace=True)
    (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (27): ReLU(inplace=True)
    (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (29): ReLU(inplace=True)
    (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
    (0): Linear(in_features=25088, out_features=4096, bias=True)
    (1): ReLU(inplace=True)
    (2): Dropout(p=0.5, inplace=False)
    (3): Linear(in_features=4096, out_features=4096, bias=True)
    (4): ReLU(inplace=True)
    (5): Dropout(p=0.5, inplace=False)
    (6): Linear(in_features=4096, out_features=1000, bias=True)	# 分类为1000
  )
)

8. 网络模型的保存与读取

保存:

import torch
import torchvision
from torch import nn

vgg16 = torchvision.models.vgg16(weights=None)

# 保存方式1 即保存模型,也保存了结构
torch.save(vgg16, "vgg16_method1.pth")

# 保存方式2 模型参数 (官方推荐,因为占用空间小)
torch.save(vgg16.state_dict(), "vgg16_method2.pth")

# 陷阱
class Kun(nn.Module):
    def __init__(self):
        super(Kun, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)

    def forward(self, x):
        x = self.conv1(x)
        return x

kun = Kun()
torch.save(kun, "kun_method1.pth")

读取:

import torchvision

import torch

# # 方式1-》保存方式1来加载模型
# model = torch.load("vgg16_method1.pth")
# print(model)

# 方式2-》保存方式2 加载模型 直接输出的是字典结构
# 恢复网络模型结构
from torch import nn

vgg16 = torchvision.models.vgg16(weights=None)
vgg16.load_state_dict(torch.load("vgg16_method2.pth"))
model2 = torch.load("vgg16_method2.pth")
print(vgg16)

注意:陷阱1 直接用会报错Can’t get attribute ‘Kun’ on <module ‘main’ from ‘E:/pythonProject/src/model_load.py’>

所以要引入class 或者from model_save import *

陷阱1 直接用回报错Can't get attribute 'Kun' on <module '__main__' from 'E:/pythonProject/src/model_load.py'>
所以要引入class 或者from model_save import *
class Kun(nn.Module):
    def __init__(self):
        super(Kun, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)

    def forward(self, x):
        x = self.conv1(x)
        return x


model = torch.load("kun_method1.pth")
print(model)

9. 完整的模型训练套路

以CRF10数据集的分类为例

model.py

# 搭建神经网络
import torch
from torch import nn


class Kun(nn.Module):
    def __init__(self):
        super(Kun, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(1024, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x


# 测试
if __name__ == '__main__':
    kun = Kun()
    input = torch.ones((64, 3, 32, 32))
    output = kun(input)
    print(output.shape)

train.py

import torch
import torchvision
# 准备训练数据集
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

from model import *

# 准备训练数据集
train_data = torchvision.datasets.CIFAR10("../dataset", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
# 准备测试数据集
test_data = torchvision.datasets.CIFAR10("../dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)

# 查看训练和测试数据集的长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))

# 利用dataloader来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 创建网络模型
kun = Kun()

# 定义损失函数
loss_fn = nn.CrossEntropyLoss()

# 定义优化器
# learning_rate = 0.01        # 方便修改学习速率
learning_rate = 1e-2
optim = torch.optim.SGD(kun.parameters(), lr=learning_rate)

# 设置训练网络的一些参数
total_train_step = 0    # 记录训练的次数
total_test_step = 0     # 记录测试的次数
epoch = 10          # 循环的轮数

# 添加tensorboard
writer = SummaryWriter("../logs_train")

for i in range(epoch):
    print("-------------------第{}轮训练开始--------------------".format(i+1))

    # 训练步骤开始
    kun.train()
    for data in train_dataloader:
        imgs, targets = data
        outputs = kun(imgs)     # 将数据送入网络
        loss = loss_fn(outputs, targets)       # 记录损失值,参数分别是实际输出和真实值

        # 优化器优化模型
        optim.zero_grad()
        loss.backward()
        optim.step()
        total_train_step += 1       # 记录训练次数
        if total_train_step % 100 == 0:
            # print("训练次数:{},损失值为:{}".format(total_train_step, loss.item()))
            writer.add_scalar("train_loss", loss.item(), global_step=total_train_step)

    # 测试步骤开始
    kun.eval()
    total_test_loss = 0
    total_accuracy = 0   # 记录整体正确的个数
    with torch.no_grad():   # 只是测试,可以去除梯度
        for data in test_dataloader:
            imgs, targets = data
            outputs = kun(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss += loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()     # 横向找出最大
            total_accuracy += accuracy

    print("整体测试集上的loss为:{}".format(total_test_loss))
    print("整体测试集上的正确率为:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
    total_test_step += 1

    # 保存每一轮的训练结果
    torch.save(kun, "kun_{}.pth".format(i+1))
    print("模型已保存")

writer.close()

结果:

在这里插入图片描述

10. 完整的模型验证套路

利用已经训练好的模型,然后给他提供输入进行测试
以上一节保存好的第十轮训练模型为例

代码示例:

import torchvision
from PIL import Image
import torch
from torch import nn

img_path = "../images/dog.png"  # 传入狗的图
image = Image.open(img_path)
# print(image)  # <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=340x296 at 0x23DBF0CBD00>
image = image.convert('RGB')    # 因为png格式是4通道,除了RGB三通道外还有一个透明度通道,所以要使用.convert保留其颜色通道
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)),
                                            torchvision.transforms.ToTensor()])

image = transform(image)
# print(image.shape)  # torch.Size([4, 32, 32])


# 网络模型
class Kun(nn.Module):
    def __init__(self):
        super(Kun, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(1024, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x


# 使用之前训练保存好的模型
model = torch.load("kun_10.pth")
# print(model)
image = torch.reshape(image, (1, 3, 32, 32))
# 测试
model.eval()
with torch.no_grad():
    output = model(image)
print(output)

print(output.argmax(1))     # tensor([5]) 预测成功

在这里插入图片描述

利用GPU进行训练只需要对网络模型、数据(输入,标注)、损失函数加.cuda()方法
例如:


loss_fn = nn.CrossEntropyLoss()
loss_fu = loss_fun.cuda()

imgs = imgs.cuda()
targets = targets.cuda()
        
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值