从基础到卷积神经网络(第16天)

1. PyTorch 神经网络基础

1.1 模型构造

1. 块和层

首先,回顾一下多层感知机

import torch 
from torch import nn
from torch.nn import functional as F

net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))

X = torch.rand(2, 20) # 生成随机输入(批量大小=2, 输入维度=20)
net(X) # 输出(批量大小=2, 输出维度=10)

在这里插入图片描述

2. 自定义块

自定义MLP实现上一节的功能

class MLP(nn.Module): # 定义nn.Mudule的子类
    def __init__(self): 
        super().__init__() # 调用父类
        self.hidden = nn.Linear(20, 256) # 定义隐藏层
        self.out = nn.Linear(256, 10) # 定义输出层
        
    def forward(self, X): # 定义前向函数
        return self.out(F.relu(self.hidden(X))) # X-> hidden-> relu-> out

实例化MLP的层,然后再每次调用正向传播函数时调用这些层

net = MLP()
net(X)

在这里插入图片描述

3. 实现Sequential类

class MySequential(nn.Module):
    def __init__(self, *args):
        super().__init__()
        for block in args:
            self._modules[block] = block
        
    def forward(self, X):
        for block in self._modules.values():
            X = block(X)
        return X

net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
net(X)

在这里插入图片描述

4. 在正向传播中执行代码

class FixedHiddenMLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.rand_weight = torch.rand((20, 20), requires_grad=False) # 加入随机权重
        self.linear = nn.Linear(20, 20)

    def forward(self, X):
        X = self.linear(X)
        X = F.relu(torch.mm(X, self.rand_weight) + 1) # 输入和随机权重做矩阵乘法 + 1(偏移)-》激活函数
        X = self.linear(X)
        while X.abs().sum() > 1: # 控制X小于1
            X /= 2
        return X.sum() # 返回一个标量

net = FixedHiddenMLP()
net(X)

5. 混合搭配各种组合块的方法

class NestMLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),
                                 nn.Linear(64, 32), nn.ReLU())
        self.linear = nn.Linear(32, 16)
    
    def forward(self, X):
        return self.linear(self.net(X)) # 输入-> net-> linear中

chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP()) # (32, 16)->(16, 20) ->(20, 1)
chimera(X)

在这里插入图片描述
总结:
1、在init中写各种层
2、在前向函数中调用init中各种层
有很强的灵活性

1.2 参数构造

具有单隐藏层的MLP

import torch
from torch import nn

net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)

在这里插入图片描述
参数访问

print(net[2].state_dict()) # 拿到nn.Linear的相关参数

在这里插入图片描述
访问目标参数

print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)
net[2].weight.grad == None # 梯度是否为0,因为此时还没有计算,所以没有梯度

在这里插入图片描述
一次访问所有参数

print(*[(name, param.shape) for name, param in net[0].named_parameters()])
print(*[(name, param.shape) for name, param in net.named_parameters()])

输出没有block1是因为第二层是ReLU是没有参数的
在这里插入图片描述

net.state_dict()['2.bias'].data # 访问最后一层的偏移

在这里插入图片描述
从嵌套块收集参数

def block1():
    return nn.Sequential(nn.Linear(4, 8), nn.ReLU(), 
                         nn.Linear(8, 4), nn.ReLU())

def block2(): # block2嵌套4个block1
    net = nn.Sequential()
    for i in range(4): 
        net.add_module(f'block {i}', block1()) 
    return net

rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)

在这里插入图片描述

print(rgnet) # 查看网络结构

在这里插入图片描述
内置初始化

def init__normal(m): # 传入的module
    if type(m) == nn.Linear: # 如果传入的是全连接层
        nn.init.normal_(m.weight, mean=0, std=0.01) # 内置初始化,均值为0方差为1,.normal_替换函数不返回
        nn.init.zeros_(m.bias) # 所有的bias赋0

net.apply(init__normal) # 对神经网络模型net中的所有参数进行初始化,使用init_normal()函数对参数进行随机初始化
net[0].weight.data[0], net[0].bias.data[0]

在这里插入图片描述

def init_constant(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 1) # 将m.weight初始常数化为1
        nn.init.zeros_(m.bias)

net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]

在这里插入图片描述
不建议权重全部常数化,会导致所有向量向一致的方向发展

对某些块应用不同的初始化方法

def xavier(m):
    if type(m) == nn.Linear:
        nn.init.xavier_uniform_(m.weight) # 使用Xavier均匀分布进行初始化

def init_42(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 42)

net[0].apply(xavier) # 第一个层用xavier初始化
net[2].apply(init_42) # 第二个层用init_42进行初始化
print(net[0].weight.data[0])
print(net[2].weight.data)

在这里插入图片描述
自定义初始化

def my_init(m):
    if type(m) == nn.Linear:
        print(
            "Init",
            *[(name, param.shape) for name, param in m.named_parameters()][0])
        nn.init.uniform_(m.weight, -10, 10)
        m.weight.data *= m.weight.data.abs() >= 5 # 对大于等于5的位置进行保留,小于5的位置进行置零操作

net.apply(my_init) # 使用my_init对net进行初始化
net[0].weight[:2]

在这里插入图片描述
直接进行替换

net[0].weight.data[:] += 1
net[0].weight.data[0, 0] = 42
net[0].weight.data[0]

在这里插入图片描述
参数绑定(在不同的网络之间共享权重的方法)

shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), shared, nn.ReLU(), shared,  # 2和4层共享权重
                    nn.ReLU(), nn.Linear(8, 1))
net(X)
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] =100 # 当共享层中有层参数发生变化时,别的层参数也会发生变化(同步变化)
print(net[2].weight.data[0] == net[4].weight.data[0])

1.3 自定义层

构造一个没有任何参数的自定义层

import torch
import torch.nn.functional as F
from torch import nn

class CenteredLayer(nn.Module): # 层也是nn.Module的子类
    def __init__(self):
        super().__init__()
    
    def forward(self, X):
        return X - X.mean()

layer = CenteredLayer()
layer(torch.FloatTensor([1, 2, 3, 4, 5]))

在这里插入图片描述
将层作为组件合并到构建更复杂的模型

net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())

Y = net(torch.rand(4, 8))
Y.mean() # 不会真等于0是因为存在浮点的误差

带参数的图层

class MyLinear(nn.Module):
    def __init__(self, in_units, units):
        super().__init__()
        self.weight = nn.Parameter(torch.randn(in_units, units)) # 自定义参数要将其包裹在nn.Parameter中
        self.bias = nn.Parameter(torch.randn(units,))
    
    def forward(self, X):
        linear = torch.matmul(X, self.weight.data) + self.bias.data
        return F.relu(linear)

dense = MyLinear(5, 3) # 输入是5.输出是3
dense.weight

使用自定义层直接执行正向传播计算

dense(torch.rand(2, 5))

使用自定义层构建模型

net = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))
net(torch.rand(2, 64))

1.4 读写文件

加载和保存张量

import torch 
from torch import nn
from torch.nn import functional as F

x = torch.arange(4) # 构造长为4的向量
torch.save(x, 'x-file') # 把x存在当前文件目录下

x2 = torch.load("x-file") # 从指定的文件路径("x-file")加载一个PyTorch模型或张量
x2

存储一个张量列表,然后把它们读回内存

y = torch.zeros(4)
torch.save([x, y], 'x-file')
x2, y2 = torch.load('x-file')
(x2, y2)

在这里插入图片描述
写入或读取从字符串映射到张量的字典

mydict = {'x' : x, 'y' : y}
torch.save(mydict, 'mydict')
mydict2 = torch.load('mydict')
mydict2

在这里插入图片描述
加载和保存模型参数

class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden = nn.Linear(20, 256)
        self.output = nn.Linear(256, 10)

    def forward(self, x):
        return self.output(F.relu(self.hidden(x)))

net = MLP()
X = torch.randn(size = (2, 20))
Y = net(X)

将模型的参数(主要是权重)存储到一个叫‘mlp.params’的文件

torch.save(net.state_dict(), 'mlp.params')

实例化了原始多层感知机的一个备份,直接读取文件中存储的参数

clone = MLP()
clone.load_state_dict(torch.load("mlp.params")) # 从指定的文件路径("mlp.params")加载一个PyTorch模型的参数,并将这些参数应用到一个新的模型实例(clone)上
clone.eval()

在这里插入图片描述
验证

Y_clone = clone(X)
Y_clone == Y

在这里插入图片描述

使用GPU

查看gpu

!nvidia-smi

查询可用gpu的数量

import torch
from torch import nn

torch.cuda.device_count()

计算设备

import torch
from torch import nn

torch.device('cpu'), torch.cuda.device('cuda')

这两个函数允许我们在请求的GPU不存在的情况下运行代码

def try_gpu(i=0):  
    """如果存在,则返回gpu(i),否则返回cpu()。"""
    if torch.cuda.device_count() >= i + 1:
        return torch.device(f'cuda:{i}')
    return torch.device('cpu')

def try_all_gpus():  
    """返回所有可用的GPU,如果没有GPU,则返回[cpu(),]。"""
    devices = [
        torch.device(f'cuda:{i}') for i in range(torch.cuda.device_count())]
    return devices if devices else [torch.device('cpu')]

try_gpu(), try_gpu(10), try_all_gpus()

查看张量所在的设备,默认是在cpu上

x = torch.tensor([1, 2, 3])
x.device

存储在GPU上

X = torch.ones(2, 3, device=try_gpu())
X
Y = torch.rand(2, 3, device=try_gpu())
Y

计算X+Y,要决定在哪里执行这个操作,如果不在同一个gpu要执行拷贝

Z = X.cuda(0)
Y + Z

神经网络和GPU

net = nn.Sequential(nn.Linear(3, 1))
net = net.to(device=try_gpu()) # 将cpu上创建好的网络挪到gpu上

net(X)

确认模型参数存储在同一个GPU上

net[0].weight.data.device

2. 卷积层

  • 卷积层将输入和核矩阵进行交叉相关,加上偏移后得到输出
  • 核矩阵和偏移是可学习的参数
  • 核矩阵的大小是超参数

2.1 卷积层的简单实现

实现:
互相关运算
【当我们使用 nn.Parameter() 将张量包装成可优化参数时,该参数将被注册到模型的参数列表中,以便在反向传播期间更新和优化。这样,我们可以在定义模型时,使用 nn.Parameter() 创建可训练的权重、偏置等参数,并在训练过程中对其进行优化。

例如,可以使用 nn.Parameter() 创建一个可训练的权重矩阵参数:

weight = nn.Parameter(torch.randn(3, 4))
在模型训练过程中,优化器可以自动更新这个权重参数,以最小化损失函数。】

import torch
from torch import nn
from d2l import torch as d2l

def corr2d(X, K):   # X是输入,K是核矩阵
    """计算二维互相关运算。"""
    h, w = K.shape # 行数和列数
    Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1)) # 输出的行列
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i:i + h, j:j + w] * K).sum()
    return Y

验证:

# 验证
X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
corr2d(X, K)

在这里插入图片描述
实现二维卷积层:

class Conv2D(nn.Module):
    def __init__(self, kernel_size):
        super().__init__()
        self.weight = nn.Parameter(torch.rand(kernel_size)) # 生成一个指定大小kernel_size的随机张量,nn.Parameter张量包装成可优化参数
        self.bias = nn.Parameter(torch.zeros(1)) # 生成一个大小为1的全零张量(标量)
    
    def forward(self, x):
        return corr2d(x, self.weight) + self.bias # 用x和weight做互相关运算再加上偏移

卷积层的一个简单应用:检测图像中不同颜色的边缘

X = torch.ones((6, 8))
X[:, 2:6] = 0
X

在这里插入图片描述
定义一个卷积核

K = torch.tensor([[1.0, -1.0]]) # 卷积核已知
# 输出Y 中的1代表从白色到黑色的边缘(从1-》0),-1代表从黑色到白色的边缘(从0到-1)
Y = corr2d(X, K)
Y

在这里插入图片描述
缺点:自定义的卷积核K 只能检测垂直边缘

corr2d(X.t(), K) # X.t()对X做转置,X边缘成横向

在这里插入图片描述
学习由X生成Y的卷积核:在K未知的情况下,由输入和输出学习出K

conv2d = nn.Conv2d(1, 1, kernel_size = (1, 2), bias=False) # 输入通道= 1, 输出通道= 1

X = X.reshape((1, 1, 6, 8))
Y = Y.reshape((1, 1, 6, 7))

for i in range(10): # 迭代十轮
    Y_hat = conv2d(X)
    l = (Y_hat - Y)**2 # 使用均方误差作为损失
    conv2d.zero_grad() # 把con2d的梯度设为0
    l.sum().backward() # 计算梯度
    conv2d.weight.data[:] -= 3e-2 * conv2d.weight.grad # 以3e-2学习率,将卷积层的权重参数更新为当前权重参数减去梯度乘以学习率,[:]原地更新
    if (i + 1) % 2 == 0: #每两轮进行输出
        print(f'batch {i + 1}, loss {l.sum(): .3f}')

在这里插入图片描述
所学的卷积核的权重张量

# 所学的卷积核的权重张量
conv2d.weight.data.reshape((1, 2))

在这里插入图片描述
可以看到经过10论学习后的K 值和最开始自定的(1, -1)非常接近,可以完成由检测X的边缘

2.2 卷积层里的填充和步幅

填充:

  • 给定(32*32)输入图像
  • 应用5*5大小的卷积核
    • 第一层得到输出28*28
    • 第七层得到输出4*4
  • 更大的卷积核可以更快的减小输出大小
    • 形状从(hw)减少到(h-k+1)(w-k+1)

输入不够大, 如何解决更深网络模型的使用----填充
在输入周围添加额外的行/列,通常取k-1,保持图像输入输出不变
在这里插入图片描述
这样可以保证输出和输入形状相同

步幅:

  • 填充减小的输出大小核层数线性相关

    • 给定输入大小224x224,在使用5x5卷积核的情况下,需要55层将输出降低到4x4
    • 需要大量计算才能得到较小输出
  • 步幅是指行/列的滑动步长
    在这里插入图片描述
    在这里插入图片描述
    总结:

  • 填充和步幅都是卷积层的超参数

  • 填充在输入周围添加额外的行/列,来控制输出形状的减少量

  • 步幅是每次滑动核窗口时的行/列的步长,可以成倍的减少输出形状

代码实现:

在所有侧边填充一个像素

import torch
from torch import nn

def comp_conv2d(conv2d, X):
    X = X.reshape((1, 1) + X.shape)# (1, 1) + X.shape 表示将 (1, 1) 作为一个元组与 X.shape 进行连接,形成一个新的元组 (1, 1, 8, 8)
    Y = conv2d(X)
    return Y.reshape(Y.shape[2:])# 返回Y的后两维

conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1)# padding=1上下左右各填充一行
X = torch.rand(size=(8, 8))
comp_conv2d(conv2d, X).shape
# 未填充:(8-3+1, 8-3+1)

在这里插入图片描述
填充不同的高度和宽度

conv2d = nn.Conv2d(1, 1, kernel_size=(5, 3), padding=(2, 1)) # 上下填充2列,左右填充1列
comp_conv2d(conv2d, X).shape

在这里插入图片描述
将高度和宽度的步幅设置为2

conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)
comp_conv2d(conv2d, X).shape

在这里插入图片描述
更复杂的情况

conv2d = nn.Conv2d(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))
comp_conv2d(conv2d, X).shape

在这里插入图片描述
计算过程:

在这里插入图片描述

2.3 卷积层里的输入和输出通道

  • 输出通道数是卷积层的超参数
  • 每个输入通道有独立的二维卷积核,所有通道结果相加得到每一个输出通道结果
  • 每个输出通道有独立的三维卷积核

【zip(X, K) 将输入张量集合 X 和核张量集合 K 打包成一个元组的序列,每个元组包含对应位置的输入张量和核张量。】

1x1卷积是指核大小为1x1的卷积操作。在卷积神经网络(CNN)中,常用的卷积操作是通过滑动一个核或滤波器在输入张量上提取特征。这个核的大小决定了感受野的大小和提取的特征的空间范围。

实现多输入通道互相关运算

import torch
from d2l import torch as d2l 

def corr2d_multi_in(X, K):
    return sum(d2l.corr2d(x, k) for x, k in zip(X, K)) 

验证互相关运算的输出

X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],
                  [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
K = torch.tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])

corr2d_multi_in(X, K)

在这里插入图片描述
计算多个通道的输出的互相关函数

def corr2d_multi_in_out(X, K):
    return torch.stack([corr2d_multi_in(X, k) for k in K], 0) # 对 X 的多通道输入与 K 的多核进行卷积操作,并将每个卷积结果张量按照第0维度进行堆叠,得到一个具有多个通道的输出张量

K = torch.stack((K, K+1, K+2), 0)
K.shape

在这里插入图片描述

corr2d_multi_in_out(X, K)

在这里插入图片描述

1x1卷积与其他卷积操作相比具有以下特点:

核的大小为1x1,所以只对一个像素进行卷积操作。
由于卷积核的大小为1x1,因此没有空间上的局部连接和权值共享。
1x1卷积可以改变通道数,可以通过控制输出通道的数量来调整特征映射的维度。
1x1卷积可以用于降维和增加非线性。
在网络中,1x1卷积通常与其他卷积层、池化层和全连接层一起使用,用于增加网络的表达能力和非线性。
1x1卷积常用于改变特征映射的通道数,例如用于减少计算量和参数数量,或者用于增加网络的非线性。在有些情况下,1x1卷积也可以用于提取全局特征或将多个特征图融合为一个特征图。

# 1x1卷积 等级于一个全连接层
def corr2d_multi_in_out_1x1(X, K):
    c_i, h, w = X.shape
    c_o = K.shape[0]
    X = X.reshape((c_i, h * w))
    K = K.reshape((c_o, c_i))
    Y = torch.matmul(K, X) # 对K 和 X 执行矩阵乘法
    return Y.reshape((c_o, h, w))

X = torch.normal(0, 1, (3, 3, 3))
K = torch.normal(0, 1, (2, 3, 1, 1))

Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
assert float(torch.abs(Y1 - Y2).sum()) < 1e-6

3. 池化层

池化层返回窗口中最大或者平均值;
缓解卷积层对位置的敏感性;
同样有窗口大小,填充和步幅作为超参数,但是没有可以学习的参数

实现:

# 实现池化层的正向传播
import torch
from torch import nn
from d2l import torch as d2l

def pool2d(X, pool_size, mode='max'):
    p_h, p_w = pool_size # 拿到池化窗口的高和宽
    Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1)) # 创建输出(假设为单通道)
    for i in range(Y.shape[0]): # 在每行迭代
        for j in range(Y.shape[1]): # 在每列迭代
            if mode == 'max':
                Y[i, j] = X[i:i + p_h, j:j + p_w].max()
            elif mode =='avg':
                Y[i, j] = X[i:i + p_h, j: j + p_w].mean()
    return Y

验证二维最大池化层的输出

X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
pool2d(X, (2, 2))

在这里插入图片描述
验证平均池化层

pool2d(X, (2, 2), mode='avg')

在这里插入图片描述
填充和步幅

X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4))
X

在这里插入图片描述
深度学习框架中的步幅与池化窗口的大小相同

pool2d = nn.MaxPool2d(3) # 3*3 的池化窗口
pool2d(X)

在这里插入图片描述
填充和步幅可以手动设定

pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)

在这里插入图片描述
设定一个任意大小的矩阵池化窗口,并分别设置填充和步幅的高度和宽度

pool2d = nn.MaxPool2d((2, 3), padding=(1, 1), stride=(2, 3))
pool2d(X)

在这里插入图片描述
池化层在每输入通道上单独运算
【torch.cat() 函数将两个张量沿着指定的维度进行拼接。

X 是一个张量。
X+1 表示对 X 的每个元素都加1,得到一个新的张量。
(X, X+1) 是待拼接的张量元组。
1 是表示拼接的维度,即沿着第1维度进行拼接。
最终,torch.cat((X, X+1), 1) 的作用是将张量 X 和 X+1 沿着第1维度进行拼接,生成一个新的张量。拼接后的张量将具有与原始张量 X 相同的形状,只是在第1维度上增加了元素的数量。

例如,如果 X 是一个形状为 (3, 4) 的张量,那么拼接后的张量形状将为 (3, 8),其中第1维度的大小变为原来的两倍。拼接后的张量将包含原始张量 X 和 X+1 对应位置的元素。】

X = torch.cat((X, X+1), 1) # 将张量 X 和 X+1 沿着第1维度进行拼接,生成一个新的张量。拼接后的张量将具有与原始张量 X 相同的形状,只是在第1维度上增加了元素的数量
X

在这里插入图片描述

pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)

在这里插入图片描述

4. 批量归一化

4.1 批量归一化相关

forward是从下往上计算梯度
backward是从上往下计算梯度-> 梯度在上层变化比较大,下层变化比较小-> 在顶部变化快,底部变化慢,上层梯度不断更新,下层梯度更新缓慢-> 整体收敛慢

  • 损失出现在最后,后面的层训练较快

  • 数据在最底部

    • 底部的层训练较慢
    • 底部层一旦变化,所有都要跟着变
    • 导致最后的那些层(顶部)需要重新学习很多次
    • 导致收敛变慢
  • 批量归一化:在学习底部层的时候避免顶部层重复训练
    在这里插入图片描述

批量归一化:->固定分布,添加线性

  • 固定小批量里面的均值和方差【可以提前计算好】:
    μ B = 1 ∣ B ∣ ∑ i ∈ B x i a n d σ B 2 = 1 ∣ B ∣ ∑ i ∈ B ( x i − μ B ) 2 + ϵ \mu_{B}= \frac{1}{|B|}\sum _{i \in B}x_{i}and \sigma _{B}^{2}= \frac{1}{|B|}\sum _{i \in B}(x_{i}- \mu _{B})^{2}+\epsilon μB=B1iBxiandσB2=B1iB(xiμB)2+ϵ
    B-小批量下标的索引
    μ B \mu _{B} μB:均值
    ϵ \epsilon ϵ:很小的数,防止方差==0

  • 然后再做额外的调整(可以学习的参数)
    x i + 1 = γ x i − μ B σ B + β x_{i+1}= \gamma \frac{x_{i}- \mu _{B}}{\sigma _{B}}+\beta xi+1=γσBxiμB+β
    γ \gamma γ β \beta β是【可以学习的参数】

  • 作用在:

    • 全连接层和卷积层输出上,激活函数前【因为激活函数是添加非线性,所以批量归一化一定要作用在激活函数之前用以添加线性】
    • 全连接层和卷积层输入上
  • 对全连接层,作用在特征维

  • 对于卷积层,作用在通道维【以1x1卷积为例子,1个通道的信息就想到与1个样本】
    在这里插入图片描述

总结:

  • 批量归一化固定小批量中的均值和方差,然后学习出适合的偏移和缩放
  • 可以加速收敛速度【允许使用更大的学习率】,但是一般不改变模型精度

4.2 代码实现

1. 从0实现

import torch
from torch import nn
from d2l import torch as d2l
"""
X:该层的输入
gamma, beta:可以学习的参数
moving_mean, moving_var:全局均值和方差【做推理的时候使用】-》可以简单理解为整个数据集上的均值和方差,而非小批量上的
eps:为避免方差变成0的很小的数值
momentum:用来更新moving_mean, moving_var【一般会提前预设】
"""
def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):
    if not torch.is_grad_enabled(): # 不计算梯度,在做推理(预测模式),推理不需要反向传播
        X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps) # 推理用的是全局的均值和方差
    # 训练
    else:
        assert len(X.shape) in (2, 4)
        if len(X.shape) == 2: # 全连接层
            # 一行是一个样本,一列是一个特征,求特征的均值和方差
            mean = X.mean(dim=0) # 按行求均值,对每一列求一个均值(压缩成一行,拍扁)求特征均值
            var = ((X - mean)**2).mean(dim=0)
        else: # len(X.shape) == 4 2D卷积层
            mean = X.mean(dim=(0, 2, 3), keepdim=True) # 按照通道求出均值,keepdim=True维度不变依然为4D
            var = ((X - mean)**2).mean(dim=(0, 2, 3), keepdim=True)
        X_hat = (X - mean) / torch.sqrt(var + eps) # 训练是用当前小批量样本的均值和方差
        # 更新moving_mean和moving_var,只在训练时更新全局的均值和方差
        moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
        moving_var = momentum * moving_var + (1.0 - momentum) * var
        
    Y = gamma * X_hat + beta
    return Y, moving_mean.data, moving_var.data

创建一个正确的BatchNorm图层

class BatchNorm(nn.Module):
    def __init__(self, num_features, num_dims): # 输入样本个数,和num_dims【2:全连接层,4:卷积层】
        super().__init__()
        if num_dims == 2:
            shape = (1, num_features)
        else:
            shape = (1, num_features, 1, 1)
        self.gamma = nn.Parameter(torch.ones(shape)) # 需要拟合的方差,需要被迭代
        self.beta = nn.Parameter(torch.zeros(shape)) # 需要拟合的均值,需要被迭代
        self.moving_mean = torch.zeros(shape)
        self.moving_var = torch.ones(shape)

    def forward(self, X):
        if self.moving_mean.device != X.device: # 因为moving_mean和var不在Parameter里,所以要确保其在同一个device下
            self.moving_mean = self.moving_mean.to(X.device)
            self.moving_var = self.moving_var.to(X.device)
        # 调用batch_norm
        Y, self.moving_mean, self.moving_var = batch_norm(
            X, self.gamma, self.beta, self.moving_mean, self.moving_var,
            eps=1e-5, momentum=0.9)
        return Y

应用BatchNorm 于LeNet模型

net = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), # 卷积层num_dims=4
    nn.Sigmoid(), nn.MaxPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4),
    nn.Sigmoid(), nn.MaxPool2d(kernel_size=2, stride=2),
    nn.Flatten(), 
    nn.Linear(16 * 4 * 4, 120), BatchNorm(120, num_dims=2), # 全连接层num_dims=2
    nn.Sigmoid(), 
    nn.Linear(120, 84), BatchNorm(84, num_dims=2),
    nn.Sigmoid(), 
    nn.Linear(84, 10)) # 输出层不需要再归一化

在Fashion-MNIST数据集上训练网络

lr, num_epochs, batch_size = 1.0, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

在这里插入图片描述

可以看到在lr设置1.0时,收敛也很快

2. 调用包 nn.BatchNorm2d()

net = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5), nn.BatchNorm2d(6), # 输入的参数是输出通道数
                    nn.Sigmoid(), nn.MaxPool2d(kernel_size=2, stride=2),
                    nn.Conv2d(6, 16, kernel_size=5), nn.BatchNorm2d(16),
                    nn.Sigmoid(), nn.MaxPool2d(kernel_size=2, stride=2),
                    nn.Flatten(), nn.Linear(256, 120), 
                    nn.BatchNorm1d(120),
                    nn.Sigmoid(), nn.Linear(120, 84), 
                    nn.BatchNorm1d(84),
                    nn.Sigmoid(), nn.Linear(84, 10))
# 在Fashion-MNIST数据集上训练网络
lr, num_epochs, batch_size = 1.0, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值