【Matlab】三维数据差值 查表 拟合

Matlab/Simulink 专栏收录该内容
23 篇文章 8 订阅

http://blog.sina.com.cn/s/blog_6fd9615d01012ecz.html

插值法是实用的数值方法,是函数逼近的重要方法。在生产和科学实验中,自变量x与因变量y的函数y = f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。当要求知道观测点之外的函数值时,需要估计函数值在该点的值。

如何根据观测点的值,构造一个比较简单的函数y=φ(x),使函数在观测点的值等于已知的数值或导数值。用简单函数y=φ(x)在点x处的值来估计未知函数y=f(x)在x点的值。寻找这样的函数φ(x),办法是很多的。φ(x)可以是一个代数多项式,或是三角多项式,也可以是有理分式;φ(x)可以是任意光滑(任意阶导数连续)的函数或是分段函数。函数类的不同,自然地有不同的逼近效果。在许多应用中,通常要用一个解析函数(一、二元函数)来描述观测数据。

根据测量数据的类型:

1.测量值是准确的,没有误差。

2.测量值与真实值有误差。

这时对应地有两种处理观测数据方法:

1.插值或曲线拟合。

2.回归分析(假定数据测量是精确时,一般用插值法,否则用曲线拟合)。

MATLAB中提供了众多的数据处理命令。有插值命令,有拟合命令,有查表命令。

2.2.1 插值命令

命令1 interp1

功能 一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。各个参量之间的关系示意图为图2-14。

clip_image002

图2-14 数据点与插值点关系示意图

格式 yi = interp1(x,Y,xi) %返回插值向量yi,每一元素对应于参量xi,同时由向量x与Y的内插值决定。参量x指定数据Y的点。若Y为一矩阵,则按Y的每列计算。yi是阶数为length(xi)*size(Y,2)的输出矩阵。

yi = interp1(Y,xi) %假定x=1:N,其中N为向量Y的长度,或者为矩阵Y的行数。

yi = interp1(x,Y,xi,method) %用指定的算法计算插值:

’nearest’:最近邻点插值,直接完成计算;

’linear’:线性插值(缺省方式),直接完成计算;

’spline’:三次样条函数插值。对于该方法,命令interp1调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函数。命令spline用它们执行三次样条函数插值;

’pchip’:分段三次Hermite插值。对于该方法,命令interp1调用函数pchip,用于对向量x与y执行分段三次内插值。该方法保留单调性与数据的外形;

’cubic’:与’pchip’操作相同;

’v5cubic’:在MATLAB 5.0中的三次插值。

对于超出x范围的xi的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。对其他的方法,interp1将对超出的分量执行外插值算法。

yi = interp1(x,Y,xi,method,'extrap') %对于超出x范围的xi中的分量将执行特殊的外插值法extrap。

yi = interp1(x,Y,xi,method,extrapval) %确定超出x范围的xi中的分量的外插值extrapval,其值通常取NaN或0。

例2-31

>>x = 0:10; y = x.*sin(x);

>>xx = 0:.25:10; yy = interp1(x,y,xx);

>>plot(x,y,'kd',xx,yy)

插值图形

clip_image004图2-15 一元函数插值图形

例2-32

>> year = 1900:10:2010;

>> product = [75.995 91.972 105.711 123.203 131.669 150.697 179.323 203.212 226.505 249.633 256.344 267.893 ];

>>p1995 = interp1(year,product,1995)

>>x = 1900:1:2010;

>>y = interp1(year,product,x,'pchip');

>>plot(year,product,'o',x,y)

插值结果为:

p1995 =

252.9885

插值图形为图2-16。

clip_image006

图2-16 离散数据的一维插值图

命令2 interp2

功能 二维数据内插值(表格查找)

格式 ZI = interp2(X,Y,Z,XI,YI) %返回矩阵ZI,其元素包含对应于参量XI与YI(可以是向量、或同型矩阵)的元素,即Zi(i,j)←[Xi(i,j),yi(i,j)]。用户可以输入行向量和列向量Xi与Yi,此时,输出向量Zi与矩阵meshgrid(xi,yi)是同型的。同时取决于由输入矩阵X、Y与Z确定的二维函数Z=f(X,Y)。参量X与Y必须是单调的,且相同的划分格式,就像由命令meshgrid生成的一样。若Xi与Yi中有在X与Y范围之外的点,则相应地返回nan(Not a Number)。

ZI = interp2(Z,XI,YI) %缺省地,X=1:n、Y=1:m,其中[m,n]=size(Z)。再按第一种情形进行计算。

ZI = interp2(Z,n) %作n次递归计算,在Z的每两个元素之间插入它们的二维插值,这样,Z的阶数将不断增加。interp2(Z)等价于interp2(z,1)。

ZI = interp2(X,Y,Z,XI,YI,method) %用指定的算法method计算二维插值:

’linear’:双线性插值算法(缺省算法);

’nearest’:最临近插值;

’spline’:三次样条插值;

’cubic’:双三次插值。

clip_image008例2-33:

>>[X,Y] = meshgrid(-3:.25:3);

>>Z = peaks(X,Y);

>>[XI,YI] = meshgrid(-3:.125:3);

>>ZZ = interp2(X,Y,Z,XI,YI);

>>surfl(X,Y,Z);hold on;

>>surfl(XI,YI,ZZ+15)

>>axis([-3 3 -3 3 -5 20]);shading flat

>>hold off

插值图形为图2-17。

例2-34

>>years = 1950:10:1990;

>>service = 10:10:30;

>>wage = [150.697 199.592 187.625

179.323 195.072 250.287

203.212 179.092 322.767

226.505 153.706 426.730

249.633 120.281 598.243];

>>w = interp2(service,years,wage,15,1975)

插值结果为:

w =

190.6288

命令3 interp3

功能 三维数据插值(查表)

格式 VI = interp3(X,Y,Z,V,XI,YI,ZI) %找出由参量X,Y,Z决定的三元函数V=V(X,Y,Z)在点(XI,YI,ZI)的值。参量XI,YI,ZI是同型阵列或向量。若向量参量XI,YI,ZI是不同长度,不同方向(行或列)的向量,这时输出参量VI与Y1,Y2,Y3为同型矩阵。其中Y1,Y2,Y3为用命令meshgrid(XI,YI,ZI)生成的同型阵列。若插值点(XI,YI,ZI)中有位于点(X,Y,Z)之外的点,则相应地返回特殊变量值NaN。

VI = interp3(V,XI,YI,ZI) %缺省地,X=1:N,Y=1:M,Z=1:P,其中,[M,N,P]=size(V),再按上面的情形计算。

VI = interp3(V,n) %作n次递归计算,在V的每两个元素之间插入它们的三维插值。这样,V的阶数将不断增加。interp3(V)等价于interp3(V,1)。

VI = interp3(…,method) %用指定的算法method作插值计算:

‘linear’:线性插值(缺省算法);

‘cubic’:三次插值;

‘spline’:三次样条插值;

‘nearest’:最邻近插值。

说明 在所有的算法中,都要求X,Y,Z是单调且有相同的格点形式。当X,Y,Z是等距且单调时,用算法’*linear’,’*cubic’,’*nearest’,可得到快速插值。

例2-35

>>[x,y,z,v] = flow(20);

>>[xx,yy,zz] = meshgrid(.1:.25:10, -3:.25:3, -3:.25:3);

>>vv = interp3(x,y,z,v,xx,yy,zz);

>>slice(xx,yy,zz,vv,[6 9.5],[1 2],[-2 .2]); shading interp;colormap cool

插值图形为图2-18。

clip_image010

图2-18 三维插值图

命令4 interpft

功能 用快速Fourier算法作一维插值

格式 y = interpft(x,n) %返回包含周期函数x在重采样的n个等距的点的插值y。若length(x)=m,且x有采样间隔dx,则新的y的采样间隔dy=dx*m/n。注意的是必须n≥m。若x为一矩阵,则按x的列进行计算。返回的矩阵y有与x相同的列数,但有n行。

y = interpft(x,n,dim) %沿着指定的方向dim进行计算

命令5 griddata

功能 数据格点

格式 ZI = griddata(x,y,z,XI,YI) %用二元函数z=f(x,y)的曲面拟合有不规则的数据向量x,y,z。griddata将返回曲面z在点(XI,YI)处的插值。曲面总是经过这些数据点(x,y,z)的。输入参量(XI,YI)通常是规则的格点(像用命令meshgrid生成的一样)。XI可以是一行向量,这时XI指定一有常数列向量的矩阵。类似地,YI可以是一列向量,它指定一有常数行向量的矩阵。

[XI,YI,ZI] = griddata(x,y,z,xi,yi) %返回的矩阵ZI含义同上,同时,返回的矩阵XI,YI是由行向量xi与列向量yi用命令meshgrid生成的。

[…] = griddata(…,method) %用指定的算法method计算:

‘linear’:基于三角形的线性插值(缺省算法);

‘cubic’: 基于三角形的三次插值;

‘nearest’:最邻近插值法;

‘v4’:MATLAB 4中的griddata算法。

命令6 spline

功能 三次样条数据插值

格式 yy = spline(x,y,xx) %对于给定的离散的测量数据x,y(称为断点),要寻找一个三项多项式clip_image012,以逼近每对数据(x,y)点间的曲线。过两点clip_image014clip_image016只能确定一条直线,而通过一点的三次多项式曲线有无穷多条。为使通过中间断点的三次多项式曲线具有唯一性,要增加两个条件(因为三次多项式有4个系数):

1.三次多项式在点clip_image014[1]处有: clip_image019

2.三次多项式在点clip_image016[1]处有:clip_image022

3.p(x)在点clip_image014[2]处的斜率是连续的(为了使三次多项式具有良好的解析性,加上的条件);

4.p(x)在点clip_image014[3]处的曲率是连续的;

对于第一个和最后一个多项式,人为地规定如下条件:

①.clip_image025

②.clip_image027

上述两个条件称为非结点(not-a-knot)条件。综合上述内容,可知对数据拟合的三次样条函数p(x)是一个分段的三次多项式:

clip_image029,其中每段clip_image031都是三次多项式。

该命令用三次样条插值计算出由向量x与y确定的一元函数y=f(x)在点xx处的值。若参量y是一矩阵,则以y的每一列和x配对,再分别计算由它们确定的函数在点xx处的值。则yy是一阶数为length(xx)*size(y,2)的矩阵。

pp = spline(x,y) %返回由向量x与y确定的分段样条多项式的系数矩阵pp,它可用于命令ppval、unmkpp的计算。

例2-36

对离散地分布在y=exp(x)sin(x)函数曲线上的数据点进行样条插值计算:

>>x = [0 2 4 5 8 12 12.8 17.2 19.9 20]; y = exp(x).*sin(x);

>>xx = 0:.25:20;

>>yy = spline(x,y,xx);

>>plot(x,y,'o',xx,yy)

插值图形结果为图2-19。

clip_image033

图2-19 三次样条插值

命令7 interpn

功能 n维数据插值(查表)

格式 VI = interpn(X1,X2,,…,Xn,V,Y1,Y2,…,Yn) %返回由参量X1,X2,…,Xn,V确定的n元函数V=V(X1,X2,…,Xn)在点(Y1,Y2,…,Yn)处的插值。参量Y1,Y2,…,Yn是同型的矩阵或向量。若Y1,Y2,…,Yn是向量,则可以是不同长度,不同方向(行或列)的向量。它们将通过命令ndgrid生成同型的矩阵,再作计算。若点(Y1,Y2,…,Yn)中有位于点(X1,X2,…,Xn)之外的点,则相应地返回特殊变量NaN。

VI = interpn(V,Y1,Y2,…,Yn) %缺省地,X1=1:size(V,1),X2=1:size(V,2),…,Xn=1:size(V,n),再按上面的情形计算。

VI = interpn(V,ntimes) %作ntimes次递归计算,在V的每两个元素之间插入它们的n维插值。这样,V的阶数将不断增加。interpn(V)等价于interpn(V,1)。

VI = interpn(…,method) %用指定的算法method计算:

‘linear’:线性插值(缺省算法);

‘cubic’:三次插值;

‘spline’:三次样条插值法;

‘nearest’:最邻近插值算法。

命令8 meshgrid

功能 生成用于画三维图形的矩阵数据。

格式 [X,Y] = meshgrid(x,y) 将由向量x,y(可以是不同方向的)指定的区域[min(x),max(x),min(y),max(y)]用直线x=x(i),y=y(j)(i=1,2,…,length(x) ,j=1,2,…,length(y))进行划分。这样,得到了length(x)*length(y)个点,这些点的横坐标用矩阵X表示,X的每个行向量与向量x相同;这些点的纵坐标用矩阵Y表示,Y的每个列向量与向量y相同。其中X,Y可用于计算二元函数z=f(x,y)与三维图形中xy平面矩形定义域的划分或曲面作图。

[X,Y] = meshgrid(x) %等价于[X,Y]=meshgrid(x,x)。

[X,Y,Z] = meshgrid(x,y,z) %生成三维阵列X,Y,Z,用于计算三元函数v=f(x,y,z)或三维容积图。

例2-37

[X,Y] = meshgrid(1:3,10:14)

计算结果为:

X =

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

Y =

10 10 10

11 11 11

12 12 12

13 13 13

14 14 14

命令9 ndgrid

功能 生成用于多维函数计算或多维插值用的阵列

格式 [X1,X2,…,Xn] = ndgrid(x1,x2,…,xn) %把通过向量x1,x2,x3…,xn指定的区域转换为数组x1,x2,x3,…,xn。这样,得到了 length(x1)* length(x2)*…*length(xn)个点,这些点的第一维坐标用矩阵X1表示,X1的每个第一维向量与向量x1相同;这些点的第二维坐标用矩阵X2表示,X2的每个第二维向量与向量x2相同;如此等等。其中X1,X2,…,Xn可用于计算多元函数y=f(x1,x2,…,xn)以及多维插值命令用到的阵列。

[X1,X2,…,Xn] = ndgrid(x) %等价于[X1,X2,…,Xn] = ndgrid(x,x,…,x)

2.2.2 查表命令

命令1 table1

功能 一维查表

格式 Y = table1(TAB,X0) %返回用表格矩阵TAB中的行线性插值元素,对X0(TAB的第一列查找X0)进行线性插值得到的结果Y。矩阵TAB是第一列包含关键值,而其他列包含数据的矩阵。X0中的每一元素将相应地返回一线性插值行向量。矩阵TAB的第一列必须是单调的。

例2-38

>>tab = [(1:4)' hilb(4)]

>>y = table1(tab,[1 2.3 3.6 4])

查表结果为:

tab =

1.0000 1.0000 0.5000 0.3333 0.2500

2.0000 0.5000 0.3333 0.2500 0.2000

3.0000 0.3333 0.2500 0.2000 0.1667

4.0000 0.2500 0.2000 0.1667 0.1429

Warning: TABLE1 is obsolete and will be removed in future versions. Use INTERP1 or INTERP1Q instead.

> In D:\MATLABR12\toolbox\matlab\polyfun\table1.m at line 31

y =

1.0000 0.5000 0.3333 0.2500

0.4500 0.3083 0.2350 0.1900

0.2833 0.2200 0.1800 0.1524

0.2500 0.2000 0.1667 0.1429

由上面结果可知,table1是一将要废弃的命令。

命令2 table2

功能 二维查表

格式 Z = table1(TAB,X0,Y0) %返回用表格矩阵TAB中的行与列交叉线性线性插值元素,对X0(TAB的第一列查找X0)进行线性插值,对Y0(TAB的第一行查找Y0)进行线性插值,对上述两个数值进行交叉线性插值,得到的结果为Z。矩阵TAB是第一列与第一行列都包含关键值,而其他的元素包含数据的矩阵。TAB(1,1)的关键值将被忽略。[X0,Y0]中的每点将相应地返回一线性插值。矩阵TAB的第一行与第一列必须是单调的。

例2-39

>>tab = [NaN 1:4; (1:4)' magic(4)]

>>y = table2(tab,[2 3 3.7],[1.3 2.3 4])

查表的结果为:

tab =

NaN 1 2 3 4

1 16 2 3 13

2 5 11 10 8

3 9 7 6 12

4 4 14 15 1

Warning: TABLE2 is obsolete and will be removed in future versions. Use INTERP2 instead.

> In D:\MATLABR12\toolbox\matlab\polyfun\table2.m at line 24

Warning: TABLE1 is obsolete and will be removed in future versions. Use INTERP1 or INTERP1Q instead.

> In D:\MATLABR12\toolbox\matlab\polyfun\table1.m at line 31

In D:\MATLABR12\toolbox\matlab\polyfun\table2.m at line 29

Warning: TABLE1 is obsolete and will be removed in future versions. Use INTERP1 or INTERP1Q instead.

> In D:\MATLABR12\toolbox\matlab\polyfun\table1.m at line 31

In D:\MATLABR12\toolbox\matlab\polyfun\table2.m at line 31

y =

6.8000 10.7000 8.0000

8.4000 6.7000 12.0000

7.4200 12.0200 4.3000

由上面的结果可知,table2是将要废弃的命令。

参与评论 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值