伽马(Gamma)校正的原理及opencv实现

转自 Gamma校正及其OpenCV实现,略有改动。

 

一、什么是Gamma校正?

Gamma校正是对输入图像灰度值进行的非线性操作,使输出图像灰度值与输入图像灰度值呈指数关系:

[2]

这个指数即为Gamma.

经过Gamma校正后的输入和输出图像灰度值关系如图1所示:横坐标是输入灰度值,纵坐标是输出灰度值,蓝色曲线是gamma值小于1时的输入输出关系,红色曲线是gamma值大于1时的输入输出关系。可以观察到,当gamma值小于1时(蓝色曲线),图像的整体亮度值得到提升,同时低灰度处的对比度得到增加,更利于分辩低灰度值时的图像细节。

                                                                                图1 Gamma校正.

 

二、为什么进行Gamma校正?

1. 人眼对外界光源的感光值与输入光强不是呈线性关系的,而是呈指数型关系的。在低照度下,人眼更容易分辨出亮度的变化,随着照度的增加,人眼不易分辨出亮度的变化。而摄像机感光与输入光强呈线性关系。如图2所示:

图2 人眼和摄像机的感光与实际输入光强的关系[1]。

为方便人眼辨识图像,需要将摄像机采集的图像进行gamma校正。

 

2. 为能更有效的保存图像亮度信息,需进行Gamma校正。

未经gamma校正和经过gamma校正保存图像信息如图3所示:

图3 未经gamma校正和经过gamma校正保存图像信息.

可以观察到,未经gamma校正的情况下,低灰度时,有较大范围的灰度值被保存成同一个值,造成信息丢失;同时高灰度值时,很多比较接近的灰度值却被保存成不同的值,造成空间浪费。经过gamma校正后,改善了存储的有效性和效率。

 

三、利用OpenCV实现的Gamma校正

[cpp]  view plain  copy
  1. void MyGammaCorrection(Mat& src, Mat& dst, float fGamma)  
  2. {  
  3.     CV_Assert(src.data);  
  4.   
  5.     // accept only uchar type matrices,when use CV_8UC1 or CV_8UC3,src.depth()==0
  6.     //sizeof(uchar)==1   
  7.     CV_Assert(src.depth() != sizeof(uchar));  
  8.   
  9.     // build look up table  
  10.     unsigned char lut[256];  
  11.     forint i = 0; i < 256; i++ )  
  12.     {  
  13.         lut[i] = saturate_cast<uchar>(pow((float)(i/255.0), fGamma) * 255.0f);  
  14.     }  
  15.   
  16.     dst = src.clone();  
  17.     const int channels = dst.channels();  
  18.     switch(channels)  
  19.     {  
  20.         case 1:  
  21.             {  
  22.   
  23.                 MatIterator_<uchar> it, end;  
  24.                 for( it = dst.begin<uchar>(), end = dst.end<uchar>(); it != end; it++ )  
  25.                     //*it = pow((float)(((*it))/255.0), fGamma) * 255.0;  
  26.                     *it = lut[(*it)];  
  27.   
  28.                 break;  
  29.             }  
  30.         case 3:   
  31.             {  
  32.   
  33.                 MatIterator_<Vec3b> it, end;  
  34.                 for( it = dst.begin<Vec3b>(), end = dst.end<Vec3b>(); it != end; it++ )  
  35.                 {  
  36.                     //(*it)[0] = pow((float)(((*it)[0])/255.0), fGamma) * 255.0;  
  37.                     //(*it)[1] = pow((float)(((*it)[1])/255.0), fGamma) * 255.0;  
  38.                     //(*it)[2] = pow((float)(((*it)[2])/255.0), fGamma) * 255.0;  
  39.                     (*it)[0] = lut[((*it)[0])];  
  40.                     (*it)[1] = lut[((*it)[1])];  
  41.                     (*it)[2] = lut[((*it)[2])];  
  42.                 }  
  43.   
  44.                 break;  
  45.   
  46.             }  
  47.     }  
  48. }  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值