域自适应——Bidirectional Learning for Domain Adaptation of Semantic Segmentation

论文题目:Bidirectional Learning for Domain Adaptation of Semantic Segmentation

本文的域位移是针对虚拟数据和真实数据之间的。

本文的贡献是:

  • 提出了一种语义分割的双向学习系统 ,其是一个学习分割适应模型和图像翻译模型的闭环学习系统。

  • 对于语义分割,提出了一种基于图像的翻译结果的自监督学习算法。该算法在特征层次上逐步调整目标域和源域

  • 图像到图像的翻译过程中,引入了感知损失,通过更新分割自适应模型来监督图像的翻译过程

方法

在这里插入图片描述

模型

双向学习

我们学习过程如图b: F F F是在没有成对例子的情况下。学习将图像从 S S S域转换到 T T T域。 T T T是在 F ( s ) F(s) F(s)上训练的分割网络,
S S S有标签。 T T T没有标签》
前向过程是用 F F F翻译结果图像分 F ( s ) F(s) F(s)和T来训练M。
F ( s ) F(s) F(s)的标签还是 S S S的标签,M的Losss的函数为:
在这里插入图片描述
一项是对抗损失,后一项是分割损失
后面的过程是本文新添加的,为了提高翻译结果的质量,在图像翻译网咯中使用了一种感知损失,它测量从一个预先实现好的目标网络中获得特征距离,这里。我们用M来计算特征来获得感知损失,通过加入另外两个损失,**GAN的损失和图形重建损失。**定义学习F的损失函数为:
在这里插入图片描述
在这里插入图片描述

提高M的自监督学习(SSL)

我们可以预测T的虚假标签,一旦获得了,M的损失函数1变为:
在这里插入图片描述
Tssl是 T T T的子集,一开始可以是空的。当一个更好的分割适应模型M被实现时,我们可以使用M来预测更多的T的高置信度标签,导致Tssl的大小增长。最近的工作[39]也使用SSL来适应分段。相比之下,我们工作中使用的SSL与对抗性学习相结合,对抗性学习可以更好地适应分段自适应模型

在这里插入图片描述
自监督的SSL的过程。第一次分割域适应。TssL先是空集。先训练F,在训练M得到Tss的伪标签。选择T中与S对齐良好的点构成TSSL。
在第二步中。我们可以很容易的将TSSL转换为S。并通过伪标签提供分割的损失来保持它们的对齐。这个过程如图2的中间所示。
因此,需要与S对齐的T中的数据量减少了。我们能继续剩余的数据转移到步骤一中。SSL比LADV更容易关注T与S的不对齐的每一步。

网络与损失函数

前两个损失函数

在这里插入图片描述
感知损失连接了图像翻译模型和语义分割自适应模型

在这里插入图片描述
上述描述了整体网路结构和损失函数:双向感知损失变为:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
分割损失使用交叉熵损失,源头域图像ls的分割损失为:
在这里插入图片描述
对于没有标签的目标域来说,我们使用最大可能性阈值(MPT),
选取预测值中的最大置信度。称为伪标签。分割损失函数定义为:
在这里插入图片描述
我们在算法1中给出了训练处理,训练过程由两个循环组成。外环主要是通过前向和后向学习翻译模型和分割适应模型。内部循环主要用于实现SSL流程

具体算法和参数选择

论文使用GTAS作为训练数据集****,Cityscapes作为目标数据集,翻译模型为**:CycleGAN.分短适应模型**为:DeepLab V2,主干为ResNet101。

  • 伪标签的阈值为:0.9
  • SSL迭代次数为2.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

big_matster

您的鼓励,是给予我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值