Agentic AI 多智能体协作:开发实战、框架选型与踩坑指南

做智能制造系统时,曾遇到一个棘手问题:单智能体既要处理设备数据采集,又要做故障预测和 AGV 调度,结果内存占满、响应延迟超 5 秒。后来拆成 3 个协作智能体,各司其职又动态配合,延迟直接降到 200ms 以内 —— 这就是多智能体协作的实战价值。

作为开发人员,我们更关心 “怎么搭架构”“用哪个框架”“如何避坑”。本文结合 3 个工业级项目经验,从技术落地角度拆解 Agentic AI 多智能体系统的开发全流程,包含可直接复用的代码片段、框架选型对比和资源优化技巧,帮你少走弯路。

一、先搞懂:自主智能体的 “开发三要素”

要做多智能体协作,先得摸清单个智能体的核心组件 —— 这是后续协作的基础。OpenAI 提出的 “规划 - 记忆 - 工具” 三模块,在开发中可直接落地为代码架构。

1.1 规划系统:让智能体 “会拆任务”

规划的核心是把 “优化工厂能耗” 这类模糊目标,拆成 “采集设备功率→分析高耗设备→调整运行参数” 的可执行步骤。开发中常用两种方案:

方案 1:基于 ReAct 框架的轻量化规划(适合中小任务)

用 LLM 生成 “思考 - 行动” 序列,比如用 GPT-4o-mini 做设备调度规划,关键代码如下:

from openai import OpenAI

client = OpenAI(api_key="your-key")

def react_planner(goal, history=[]):

    # 1. 思考:分析当前目标和历史,确定下一步动作

    thought_prompt = f"""

    目标:{goal}

    已完成动作:{history}

    请思考:下一步需要做什么?(用1句话说明)

    """

    thought = client.chat.completions.create(

        model="gpt-4o-mini",

        messages=[{"role": "user", "content": thought_prompt}]

    ).choices[0].message.content

    # 2. 行动:生成具体执行指令(如调用设备API)

    action_prompt = f"""

    思考:{thought}

    请生成行动指令:格式为["动作类型(如call_api/analyze_data)", "参数"]

    示例:["call_api", {"url": "http://device/power", "method": "GET"}]

    """

    action = eval(client.chat.completions.create(

        model="gpt-4o-mini",

        messages=[{"role": "user", "content": action_prompt}]

    ).choices[0].message.content)

    

    return {"thought": thought, "action": action}

# 测试:规划“降低机床A能耗”

goal = "将机床A的能耗从15kW降至12kW"

first_step = react_planner(goal)

print(first_step)

# 输出示例:

# {

#   "thought": "需要先获取机床A当前的功率数据和运行参数",

#   "action": ["call_api", {"url": "http://device/machineA", "method": "GET"}]

# }

方案 2:LLM+PDDL 专业规划(适合复杂任务)

当任务涉及多约束(如 “AGV 调度不能冲突 + 优先运输紧急物料”),可把自然语言转成规划领域定义语言(PDDL),调用专业规划器(如 Fast Downward)。开发要点:

  • 用 LLM 生成 PDDL 文件(避免手动写语法);
  • 规划器输出结果后,再用 LLM 转成代码可执行的指令。

1.2 记忆系统:让智能体 “记事儿”

开发中最容易踩的坑是 “内存爆炸”—— 如果把所有历史数据都塞 LLM 上下文,token 会超限制。正确做法是分层存储:

记忆类型

存储方式

开发实操

短期记忆

LLM 上下文窗口

只存当前任务的最近 10 步动作 + 结果,用列表维护

长期记忆

向量数据库(如 Milvus)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

酷柚易汛智推官

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值