泛函分析笔记(五) 距离空间

距离空间

设 X 为一个集合,函数 d : X × X → R d: X\times X \to \mathbb{R} d:X×XR 满足对任何 x , y , z ∈ X x,y,z \in X x,y,zX :

  • d ( x , x ) = 0 d(x,x) = 0 d(x,x)=0 且当 x ≠ y x\not ={ y} x=y 时, d ( x , y ) > 0 d(x,y)>0 d(x,y)>0
  • d ( x , y ) = d ( y , x ) d(x,y) = d(y,x) d(x,y)=d(y,x)
  • d ( x , z ) ≤ d ( x , y ) + d ( y , z ) d(x,z) \le d(x,y) + d(y,z) d(x,z)d(x,y)+d(y,z)

则称d为X上的距离,设 X 为一集合, d 为 X 上距离,称 ( X , d ) (X,d) (X,d) 为距离空间。

这个定义和我们通常概念上的距离很类似嘛,点到自己的距离就是0,然后没有方向性,以及三角不等式。

总用 ( X , d ) (X,d) (X,d) 表示距离空间(看到这个符号立刻就能意识到,距离也是一种拓扑。这个d代表的拓扑关系就是计算两点间的距离)

距离空间中的球: 给定 x ∈ X x\in X xX 和数 r > 0 r>0 r>0 定义X 的子集

B ( x ; r ) = { y ∈ X ; d ( x , y ) < r } B(x;r) = \{y \in X ;d(x,y) < r\} B(x;r)={yX;d(x,y)<r}

为 x 为中心或中心在 x 处,半径为 r 的球。

设 A 为 X 的子集,如果存在一个球 B ( x ; r ) ⊂ X B(x;r) \subset X B(x;r)X ,使得 A ⊂ B ( x ; r ) A \subset B(x;r) AB(x;r) ,则称 A 是有界的,否则,称 A 为无界。

扩张: X 的非空子集 A 的直径定义为一个扩张的实数。

d i a m   A : = s u p { d ( x , y ) ; x ∈ A , y ∈ A } ∈ [ 0 , + ∞ ] diam ~ A:=sup\{d(x,y); x\in A,y \in A\}\in [0,+\infty] diam A:=sup{d(x,y);xA,yA}[0,+]

这里这个sup 指的是上界,我以为是 set upper bound 的简写,后来发现是 supremum 的缩写。

点到集的距离: x ∈ X x \in X xX 到X的非空子集A的距离定义为实数

d i s t ( x , A ) : =    i n f    { d ( x , y ) ; y ∈ A } dist(x,A):= ~~inf~~\{d(x,y);y\in A\} dist(x,A):=  inf  {d(x,y);yA}

这个inf 不是无限infinite ,而是集合下界的意思infimum

其实也很熟,就类似于我们平时有啥点到直线的距离,实际上是点到直线上最近的点的距离嘛,就是这个点到直线上所以点距离集合的下界。

距离空间的性质

连续性

设 X,Y 均为距离空间,则映射 f : X → Y f:X\to Y f:XY 在点 x ∈ X x\in X xX 处连续,当且仅当对X中任何一列收敛于x的序列 ( x n ) n = 0 ∞ (x_n)_{n=0}^\infty (xn)n=0 ,Y中的序列 ( f ( x n ) ) n = 0 ∞ (f(x_n))_{n=0}^\infty (f(xn))n=0 均收敛于 f ( x ) f(x) f(x)

呐,连续性的定义大同小异嘛。

在距离空间上,如果 f : X ~ → Y f:\tilde{X} \to Y f:X~Y g : X ~ → Y g:\tilde{X} \to Y g:X~Y 是两个连续映射,且在X上相同,则对所有的 x ∈ X x\in X xX f ( x ) = g ( x ) f(x) = g(x) f(x)=g(x) ,则 f = g f = g f=g

这个也蛮简单的嘛,如果映射对应的x,y都一样,那这不就是两个相同的映射?

距离空间的完备

Cauchy 序列: ( X , d ) (X,d) (X,d) 为距离空间, x n ∈ X , n ≥ 0 x_n \in X,n\ge 0 xnX,n0 ,如果 n → ∞ n\to \infty n ,集合 ∪ m = n ∞ { x m } \cup_{m=n}^\infty \{x_m\} m=n{xm} 的直径收敛于0,则是Cauchy列。(也有别的表述方法,我感觉这个比较简单)

距离空间 ( X , d ) (X,d) (X,d) 完备是指X中的每个Cauchy 序列均在X中收敛,距离空间的子集A为完备的是指距离空间 ( X , d A ) (X,d_A) (X,dA) 是完备的,其中 d A d_A dA d d d 在A上导出的距离。
X为完备距离空间这一性质与X是否为一个更大的距离空间的子集无关。

距离空间的紧性

如果 ( X , d ) (X,d) (X,d) 是距离空间,K是X的子集,K上的拓扑由距离d导出,如果K是作为拓扑空间,满足之前说过的紧的条件,也就是Heine-Borel-Lebesgue性质,就是紧的。

说实话这个紧不紧的我还不太了解它能干嘛,等用到了再详细思考吧。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙粽子好吃嘛!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值