泛函分析笔记(2)

符号

η ξ δ ε φ α β γ π θ Λ λ \eta\\ \xi\\ \delta\\ \varepsilon\\ \varphi\\ \alpha\\ \beta\\ \gamma\\ \pi\\ \theta\\ \Lambda\\ \lambda\\ ηξδεφαβγπθΛλ

一至七章笔记

隐函数存在定理:

设 D = { ( x , y ) ∣ a ≤ x ≤ b , − ∞ ≤ y ≤ + ∞ } , F ( x , y ) 在 D 上连续且 m ≤ F y ( x , y ) ≤ M , 设D=\{(x,y)|a\leq x\leq b,-\infty\leq y \leq+\infty\}, F(x,y)在D上连续且m\leq F_y(x,y)\leq M, D={(x,y)axb,y+},F(x,y)D上连续且mFy(x,y)M,

其中 0 ≤ m ≤ M , ( x , y ) ∈ D . 其中0\leq m\leq M,(x,y)\in D. 其中0mM,(x,y)D.

则存在唯一的连续函数 y = φ ( X ) . s t F ( x , φ ( X ) ) ≡ 0 , x ∈ [ a , b ] . 则存在唯一的连续函数y=\varphi(X).st F(x,\varphi(X)) \equiv0,x\in[a,b]. 则存在唯一的连续函数y=φ(X).stF(x,φ(X))0,x[a,b].

证明:

(1)确定距离空间,建立映射

在连续函数 C [ a , b ] C[a,b] C[a,b]考虑映射:
( T φ ) ( x ) = φ ( x ) − 1 M F ( x , φ ( X ) ) , x ∈ [ a , b ] . (T\varphi)(x)=\varphi(x)-\frac{1}{M}F(x,\varphi(X)),x\in[a,b]. ()(x)=φ(x)M1F(x,φ(X)),x[a,b].
T T T C [ a , b ] C[a,b] C[a,b] C [ a , b ] C[a,b] C[a,b]的映射。

(2)我们先证明连续函数空间 C [ a , b ] C[a,b] C[a,b]是完备的

x n {x_n} xn C [ a , b ] C[a,b] C[a,b]的任意柯西列,由柯西列定义:

任意 ε > 0 \varepsilon>0 ε>0,存在 N ≥ 0 N\geq 0 N0,当 n , m ≥ N n,m\geq N n,mN时,对任意 t 0 ∈ [ a , b ] t_0\in[a,b] t0[a,b],
∣ x n ( t 0 ) − x m ( t 0 ) ∣ ≤ d ( x n , x m ) < ε . |x_n(t_0)-x_m(t_0)|\leq d(x_n,x_m)<\varepsilon. xn(t0)xm(t0)d(xn,xm)<ε.
固定 t 0 t_0 t0时, { x n ( t 0 ) } \{x_n(t_0)\} { xn(t0)} R R R的柯西列。

利用** R R R的完备性**(极限不会出去),存在 x ( t 0 ) ∈ R x(t_0)\in R x(t0)R
s t lim ⁡ x → ∞ x n ( t 0 ) = x ( 0 ) st\lim_{x\rightarrow\infty}x_n(t_0)=x(0) stxlimxn(t0)=x(0)
在上面的不等式中,

​ 令 m → ∞ m\rightarrow\infty m,则当 n ≥ N n\geq N nN时,
∣ x n ( t 0 ) − x m ( t 0 ) ∣ ≤ ε |x_n(t_0)-x_m(t_0)|\leq \varepsilon xn(t0)xm(t0)ε

定义 x = x ( t ) x=x(t) x=x(t), t 0 ∈ [ a , b ] t_0\in[a,b] t0[a,b],当 n ≥ N n\geq N nN时,
∣ x n ( t 0 ) − x ( t 0 ) ∣ ≤ ε |x_n(t_0)-x(t_0)|\leq \varepsilon xn(t0)x(t0)ε
即柯西列收敛。

(3)

压缩映射原理:

X X X是完备距离空间, T : X → X T:X\rightarrow X T:XX是压缩映射,则 T T T有唯一的不动点,即存在唯一 x ‾ ∈ X \overline{x}\in X xX,

使得 T x ‾ = x ‾ T\overline{x}=\overline{x} Tx=x.

双A定理:

C [ a , b ] C[a,b] C[a,b]中的子集 A A A是列紧集当且仅当 A A A中函数是一致有界和等度连续的。

一致有界:

存在 K > 0 K>0 K>0, s t st st对每一点 t ∈ [ a , b ] t\in[a,b] t[a,b]及一切 x ∈ A x\in A xA,有 ∣ x ( t ) ∣ ≤ K |x(t)|\leq K x(t)K.

等度连续:

对任意 ε > 0 \varepsilon>0 ε>0,存在$ \delta\geq0 , 当 ,当 ,|t_1-t_2|\leq\delta 时,对一切 时,对一切 时,对一切x\in A$,有:
∣ x ( t 1 ) − x ( t 2 ) ∣ ≤ ε . |x(t_1)-x(t_2)|\leq \varepsilon. x(t1)x(t2)ε.

列紧集:

A A A时距离空间 X X X的子集,若 A A A中任意点列都必有一个 X X X 中的收敛子列,则称集合 A A A为列紧集。

例子:

(1) K N K^N KN上每一个有界集都是列紧集。

紧集:

A A A是距离空间 X X X的子集,若存在一族开集 { G α ∣ α ∈ I } \{G_\alpha|\alpha\in I\} { GααI} s t st st A ⊂ ⋃ α ∈ I G α A\subset \bigcup_{\alpha\in I}G_\alpha AαIGα,

则称开集 { G α ∣ α ∈ I } \{G_\alpha|\alpha\in I\} { GααI} A A A的一个开覆盖。

如果 A A A任意开覆盖必存在有限子覆盖,则称 A A A为紧集。

紧集的等价刻画:

**定理:**设 A A A是距离空间 X X X的子集,则 A A A是紧集当且仅当 A A A是列紧的闭集。

开集与闭集

距离空间中的任意开集可以表示成可数个闭集的并;

证明:

距离空间中的任意闭集可以表示成可数个开集的交;

证明:
A = A ‾ = { x ∣ d ( x , A ) = 0 } = ⋂ n = 1 ∞ { x ∣ d ( x , A ) < 1 n } A=\overline{A}=\{x|d(x,A)=0\}=\bigcap_{n=1}^\infty \{x|d(x,A)<\frac{1}{n}\} A=A={ xd(x,A)=0}=n=1{ xd(x,A)<n1}

赋范空间的定义

X X X是数域 K K K上的线性空间,若存在映射 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| ∣∣∣∣: X → R X\rightarrow R XR满足
( 1 ) 对任意 x ∈ X , ∣ ∣ X ∣ ∣ ≥ 0 ; 且 ∣ ∣ X ∣ ∣ = 0 ⇔ x = ∅ ; ( 非负性 ) ( 2 ) 对任意 x ∈ X , 及 α ∈ K , ∣ α ∣ ∣ ∣ x ∣ ∣ ; ( 正齐次性 ) ( 3 ) 对任意 x , y ∈ X , ∣ ∣ x + y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ . ( 三角不等式 ) \begin{aligned} &(1)对任意x\in X,||X||\geq0;且||X||=0\Leftrightarrow x=\emptyset;(非负性)\\ &(2)对任意x\in X,及\alpha\in K,|\alpha|||x||;(正齐次性)\\ &(3)对任意x,y\in X,||x+y||\leq||x||+||y||.(三角不等式) \end{aligned} (1)对任意xX,∣∣X∣∣0;∣∣X∣∣=0x=;(非负性)(2)对任意xX,αK,α∣∣∣x∣∣;(正齐次性)(3)对任意x,yX,∣∣x+y∣∣∣∣x∣∣+∣∣y∣∣.(三角不等式)
则称 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| ∣∣∣∣ X X X的一个范数,定义了范数的线性空间称为赋范线性空间,记为( X X X, ∣ ∣ ⋅ ∣ ∣ ||\cdot|| ∣∣∣∣),或简记为 X X X.

可分性定义

X X X是一个距离空间,若 X X X中存在一个可数的稠密子集,

则称 X X X可分的距离空间。

A A A X X X的一个子集,若 X X X中存在一个可数子集 B B B,使得

B B B A A A中稠密,则 A A A可分的。

M i n k o w s k i \mathrm{Minkowski} Minkowski不等式


p ≥ 1 , ξ k , η k ∈ C , ( k = 1 , 2 , ⋯   ) p\geq1,\xi_k,\eta_k\in C,(k=1,2,\cdots) p1,ξk,ηkC,(k=1,2,)
则有
( ∑ k = 1 ∞ ∣ ξ k + η k ∣ p ) 1 p ≤ ( ∑ k = 1 ∞ ∣ ξ k ∣ p ) 1 p + ( ∑ k = 1 ∞ ∣ η k ∣ p ) 1 p (\sum_{k=1}^{\infty}|\xi_k+\eta_k|^p)^{\frac{1}{p}}\leq (\sum_{k=1}^{\infty}|\xi_k|^p)^{\frac{1}{p}} +(\sum_{k=1}^{\infty}|\eta_k|^p)^{\frac{1}{p}} (k=1ξk+ηkp)p1(k=1ξkp)

  • 7
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值