泛函分析笔记(十二) 希尔伯特空间中的伴随算子

1. 前置知识

( X , ( ⋅ , ⋅ ) ) (X,(\cdot,\cdot)) (X,(,)) K = R    o r    K = C \mathbb{ K=R ~~ or~~ K=C} K=R  or  K=C 上的内积空间,用X’表示其对偶空间,任意给定向量 y ∈ X y\in X yX ,定义线性泛函 l y : X → K l_y:X\to\mathbb K ly:XK
l y ( x ) : = ( x , y ) ∈ K , ∀ x ∈ X l_y(x):=(x,y)\in\mathbb{K},\forall x\in X ly(x):=(x,y)K,xX
是连续的且有
∣ ∣ l y ∣ ∣ X ′ = ∣ ∣ y ∣ ∣ ||l_y||_{X'}=||y|| lyX=y
(由直和定理有,在X为Hilbert空间时,其逆定理也成立。)

Hilbert空间的F.Riesz表示定理: ( X , ( ⋅ , ⋅ ) ) (X,(\cdot,\cdot)) (X,(,)) K = R    o r    K = C \mathbb{ K=R ~~ or~~ K=C} K=R  or  K=C 上的Hilbert空间,对任意给定的连续线性泛函 l ∈ X ∗ l\in X^* lX 存在唯一的向量 y l ∈ X y_l \in X ylX 使得对所有的 x ∈ X x\in X xX l ( x ) = ( x , y l ) , ∣ ∣ l ∣ ∣ X ′ = ∣ ∣ y l ∣ ∣ X l(x) = (x,y_l),||l||_{X'}=||y_l||_X l(x)=(x,yl),lX=ylX

Hilbert空间的Hanh-Banach定理: 设 X 为 K = R    o r    K = C \mathbb{ K=R ~~ or~~ K=C} K=R  or  K=C 上的Hilbert空间,Y是X的子空间, l : Y → K l:Y\to\mathbb{K} l:YK 是Y上的连续线性型,则存在连续线性型 l ~ : X → K \tilde{l}:X\to\mathbb{K} l~:XK (这就是一个延拓)满足对所有的 y ∈ Y y\in Y yY
l ~ ( y ) = l ( y ) , ∣ ∣ l ~ ( y ) ∣ ∣ X ′ = ∣ ∣ l ( y ) ∣ ∣ Y ′ \tilde{l}(y) = l(y),||\tilde{l}(y)||_{X'} = ||l(y)||_{Y'} l~(y)=l(y),l~(y)X=l(y)Y
而且这样的延拓是唯一的。

2. 伴随算子

( X , ( ⋅ , ⋅ ) X ) , ( Y , ( ⋅ , ⋅ ) Y ) (X,(\cdot,\cdot)_X) , (Y,(\cdot,\cdot)_Y) (X,(,)X),(Y,(,)Y) 为两个复Hilbert空间,给定算子 A ∈ L ( X ; Y ) A\in\mathcal{L}(X;Y) AL(X;Y)

  • 存在唯一的算子 A ∗ ∈ L ( Y ; X ) A^*\in\mathcal{L}(Y;X) AL(Y;X) ,称之为A的伴随算子 ,对所有的 x ∈ X , y ∈ Y x\in X,y\in Y xX,yY
    ( A x , y ) Y = ( x , A ∗ y ) X (Ax,y)_Y = (x,A^*y)_X (Ax,y)Y=(x,Ay)X
    这样定义的映射 A ∈ L ( X ; Y ) → A ∗ ∈ L ( Y ; X ) A\in \mathcal{L}(X;Y)\to A^*\in\mathcal{L}(Y;X) AL(X;Y)AL(Y;X) 是半线性的,而且
    ∣ ∣ A ∗ ∣ ∣ L ( Y ; X ) = ∣ ∣ A ∣ ∣ L ( X ; Y ) ||A^*||_{\mathcal{L}(Y;X)} = ||A||_{\mathcal{L}(X;Y)} AL(Y;X)=AL(X;Y)
  • ( I m   A ) ⊥ = K e r   A ∗ , ( I m   A ∗ ) ⊥ = K e r   A ,   Y = K e r   A ∗ ⊕ I m   A ‾ ,   X = K e r   A ⊕ I m   A ∗ ‾ (Im ~ A)^{\perp} = Ker ~A^*,(Im ~ A^*)^{\perp} = Ker ~A,~ Y=Ker ~ A^* \oplus \overline{Im~ A},~X=Ker ~ A \oplus \overline{Im~ A^*} (Im A)=Ker A,(Im A)=Ker A, Y=Ker AIm A, X=Ker AIm A

证明:

  1. 对每个 y ∈ Y y\in Y yY , 由于 ∣ ∣ ( A x , y ) Y ∣ ∣ ≤ ∣ ∣ A ∣ ∣   ∣ ∣ x ∣ ∣   ∣ ∣ y ∣ ∣ ||(Ax,y)_Y||\le||A||~||x||~||y|| (Ax,y)YA x y (范数的特性嘛)对所有的 x ∈ X x\in X xX 成立,因此 x ∈ X → ( A x , y ) y ∈ K x\in X \to (Ax,y)_y\in\mathbb{K} xX(Ax,y)yK 是连续线性泛函(按距离收敛嘛)
    在X上运用F.Riesz定理,有存在唯一的向量 A ∗ y ∈ X A^*y\in X AyX ,使得对一切的 x ∈ X x\in X xX ( A x , y ) Y = ( x , A ∗ y ) X (Ax,y)_Y=(x,A^*y)_X (Ax,y)Y=(x,Ay)X
    这样定义的映射 A ∗ : Y → X A^*:Y\to X A:YX 是线性的。(可以验证)

线性算子 A ∗ A^* A 连续,对任何 y ∈ Y y\in Y yY ∣ ∣ A ∗ y ∣ ∣ 2 = ( A ∗ y , A ∗ y ) X = ( A A ∗ y , y ) Y ≤ ∣ ∣ A ∣ ∣   ∣ ∣ A ∗ y ∣ ∣   ∣ ∣ y ∣ ∣ ||A^*y||^2 = (A^*y,A^*y)_X = (AA^*y,y)_Y\le ||A||~||A^*y||~||y|| Ay2=(Ay,Ay)X=(AAy,y)YA Ay y
所以有
∣ ∣ A ∗ ∣ ∣   ∣ ∣ A ∗ ∣ ∣   ∣ ∣ y ∣ ∣   ∣ ∣ y ∣ ∣ ≤ ∣ ∣ A ∣ ∣   ∣ ∣ A ∗ ∣ ∣   ∣ ∣ y ∣ ∣   ∣ ∣ y ∣ ∣ ||A^*||~||A^*||~||y||~||y||\le ||A||~||A^*||~||y||~||y|| A A y yA A y y
因此有
∣ ∣ A ∗ ∣ ∣ L ( Y ; X ) = s u p x ≠ 0 ∣ ∣ A x ∣ ∣ ∣ ∣ y ∣ ∣ ≤ ∣ ∣ A ∣ ∣ L ( X ; Y ) ||A^*||_{\mathcal{L}(Y;X)} = \mathop{sup}\limits_{x\not ={0}} \frac{||Ax||}{||y||}\le ||A||_{\mathcal{L}(X;Y)} AL(Y;X)=x=0supyAxAL(X;Y)

同理 ∀ x ∈ X , ∣ ∣ A x ∣ ∣ 2 ≤ ∣ ∣ A ∗ ∣ ∣   ∣ ∣ A x ∣ ∣   ∣ ∣ x ∣ ∣ \forall x\in X,||Ax||^2 \le ||A^*||~||Ax||~||x|| xX,Ax2A Ax x

∣ ∣ A ∣ ∣ ≤ ∣ ∣ A ∗ ∣ ∣ ||A||\le||A^*|| AA

夹逼定理嘛,他俩就相等了。

  1. ( I m   A ) ⊥ = { y ∈ Y ; ∀ z ∈ I m   A , ( y , z ) Y = 0 } = { y ∈ Y ; ∀ x ∈ X , ( y , A x ) Y = 0 } = { y ∈ Y ; ∀ x ∈ X , ( A ∗ y , x ) X = 0 } = K e r    A ∗ (Im ~ A)^{\perp} = \{y\in Y;\forall z\in Im~ A,(y,z)_Y = 0\}\\ = \{y\in Y;\forall x\in X,(y,Ax)_Y = 0\} \\= \{y\in Y;\forall x\in X,(A^*y,x)_X = 0\} = Ker~~A^* (Im A)={yY;zIm A,(y,z)Y=0}={yY;xX,(y,Ax)Y=0}={yY;xX,(Ay,x)X=0}=Ker  A

( I m   A ‾ ) ⊥ = I m   A ⊥ (\overline{Im~A})^{\perp} = Im~A^\perp (Im A)=Im A

其他类似可得。

3. 再生核

A A A 非空集合, ( X , ( ⋅ , ⋅ ) ) (X,(\cdot,\cdot)) (X,(,)) K = R    o r    K = C \mathbb{ K=R ~~ or~~ K=C} K=R  or  K=C 上的Hilbert空间, 其元素为 x : A → K x:A\to \mathbb K x:AK
设对每个 a ∈ A , ∃ C ( a ) → 0 a\in A,\exists C(a)\to 0 aA,C(a)0 使得对任何的 x ∈ X x\in X xX ,有
∣ x ( a ) ∣ ≤ C ( a ) ∣ ∣ x ∣ ∣ |x(a)|\le C(a)||x|| x(a)C(a)x
则存在函数 K : A × A → K K:A\times A\to\mathbb{K} K:A×AK ,即为X的再生核,使得对每个 a ∈ A a\in A aA ,函数 K ( ⋅ , a ) : A → K K(\cdot,a):A\to K K(,a):AK 是空间X的元素,对任何 x ∈ X x\in X xX ,有 x ( a ) = ( x , K ( ⋅ , a ) ) x(a) = (x,K(\cdot,a)) x(a)=(x,K(,a))

由F.Riesz定理易得该结论。

这个再生核还有再生核希尔伯特空间都蛮常用的,不过这里只是简单的给出了定义,以后再来仔细研究。

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
泛函分析,稠密嵌入和紧嵌入是两种常用的嵌入方式,它们之间存在密切的联系。 1. 稠密嵌入:在泛函分析,稠密嵌入通常指的是一个线性嵌入 $T:X\rightarrow Y$,其 $X$ 和 $Y$ 都是Hilbert空间,且 $T(X)$ 在 $Y$ 是稠密的。也就是说,$T(X)$ 的元素可以无限逼近 $Y$ 的任何元素。换句话说,对于 $Y$ 的任意元素 $y$,都可以找到一个序列 $\{x_n\}\subset X$,使得 $T(x_n)\rightarrow y$。 2. 紧嵌入:在泛函分析,紧嵌入通常指的是一个线性嵌入 $T:X\rightarrow Y$,其 $X$ 和 $Y$ 都是Hilbert空间,且 $T(X)$ 在 $Y$ 是紧的。也就是说,$T(X)$ 的任何序列都有一个收敛的子序列。 从定义上看,稠密嵌入和紧嵌入是两种不同的嵌入方式。但是,它们之间存在一些密切的关系: 1. 紧嵌入一定是有界的,即存在一个正实数 $M$,使得对于任意 $x\in X$,都有 $\|Tx\|\leq M\|x\|$,其 $\|\cdot\|$ 表示Hilbert空间的范数。 2. 如果 $T:X\rightarrow Y$ 是一个稠密嵌入,那么可以通过将 $Y$ 的元素限制在 $T(X)$ 来得到一个紧嵌入。具体来说,可以定义一个新的线性嵌入 $T'=\widetilde{T}|_{T(X)}:T(X)\rightarrow Y$,其 $\widetilde{T}:Y\rightarrow Y$ 是 $T$ 的闭包,即将 $T(X)$ 在 $Y$ 的闭包作为新的定义域。这样,$T'$ 就是一个从 $T(X)$ 到 $Y$ 的紧嵌入。 因此,可以通过将稠密嵌入限制在其像空间上来得到一个紧嵌入。同时,紧嵌入也可以看作是对某个Hilbert空间的稠密子空间进行扩充得到的。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙粽子好吃嘛!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值