泛函分析笔记(十三) 傅里叶级数、紧自伴算子

1. 前置知识

1.1. 规范正交系

( X , ( ⋅ , ⋅ ) ) (X,(\cdot,\cdot)) (X,(,)) 是实或复的内积空间,由 e i ∈ X e_i\in X eiX 组成的元素系 ( e i ) i ∈ I (e_i)_{i\in I} (ei)iI 称之为规范正交系,是指对所有的的 i , j ∈ I i,j\in I i,jI 均有
( e i , e j ) = δ i j (e_i,e_j) = \delta_{ij} (ei,ej)=δij
(就是相互正交的单位向量呗。。。)

如果 ( e i ) i ∈ I (e_i)_{i\in I} (ei)iI 是内积空间X的规范正交系,如果 S p a n ( e i ) i ∈ I ‾ = X \overline{Span(e_i)_{i\in I}} = X Span(ei)iI=X ,那么它是极大的(拥有向量个数最多)

可分内积空间中: ( X , ( ⋅ , ⋅ ) ) (X,(\cdot,\cdot)) (X,(,)) 是可分的无限维内积空间,有

  • 存在可数无限个向量 e n ∈ X e_n\in X enX 组成的极大规范正交系 ( e n ) n = 0 ∞ (e_n)_{n=0}^\infty (en)n=0
  • 任何规范正交系或为有限,或为可数无限(可数无限就是可列举但是无穷多的意思)

存在性: ( X , ( ⋅ , ⋅ ) ) (X,(\cdot,\cdot)) (X,(,)) 是内积空间,则存在向量 e i ∈ X e_i\in X eiX 组成的向量族 ( e i ) i ∈ I (e_i)_{i\in I} (ei)iI 满足对任何的 i , j ∈ I i,j\in I i,jI ,
( e i , e j ) = δ i j (e_i,e_j)=\delta_{ij} (ei,ej)=δij
且对 x ∈ X x\in X xX ,若对所有的 i ∈ I i\in I iI 均有当 ( x , e i ) = 0 (x,e_i) = 0 (x,ei)=0 时,则必有 x = 0 x=0 x=0

1.2. Gram-Schmidt规范正交化方法

这个线代里面肯定学了
( X , ( ⋅ , ⋅ ) ) (X,(\cdot,\cdot)) (X,(,)) 实或复的无限维内积空间中, ( f n ) n = 0 ∞ (f_n)_{n=0}^\infty (fn)n=0 可列为无限个向量 f n ∈ X f_n\in X fnX 组成的线性无关向量族,令
x ~ : = f 0 , e k ~ = f k − P k f k , k = 1 , 2 , … \tilde{x}:=f_0 ,\tilde{e_k} = f_k - P_kf_k,k=1,2,\dotsc x~:=f0,ek~=fkPkfk,k=1,2,

其中 P k P_k Pk 为X到 S p a n   ( f n ) n = 0 k − 1 Span~(f_n)_{n=0}^{k-1} Span (fn)n=0k1 上的投影算子,那么对所有的 k ≥ 1 , e ~ k ≠ 0 k\ge 1,\tilde{e}_k\not ={0} k1,e~k=0 ,记向量
e n : = e n ~ ∣ ∣ e ~ n ∣ ∣ , n ≥ 0 e_n:=\frac{\tilde{e_n}}{||\tilde e_n||},n\ge 0 en:=e~nen~,n0
则向量族 ( e n ) n = 0 ∞ (e_n)_{n=0}^{\infty} (en)n=0 是规范正交系,满足对一切 k ≥ 1 k\ge 1 k1
S p a n ( e n ) n = 0 k = S p a n ( f n ) n = 0 k Span(e_n)_{n=0}^k = Span(f_n)_{n=0}^k Span(en)n=0k=Span(fn)n=0k
S p a n ( e n ) n = 0 ∞ = S p a n ( f n ) n = 0 ∞ Span(e_n)^\infty_{n=0}=Span(f_n)_{n=0}^\infty Span(en)n=0=Span(fn)n=0

2. Hilbert 基和 Fourier 级数

Hilbert 基 Hilbert空间X中的极大规范正交系被称为X的Hilbert基

2.1. 可分Hilbert空间的 Fourier级数

( X , ( ⋅ , ⋅ ) ) (X,(\cdot,\cdot)) (X,(,)) 是无限维可分 Hilbert 空间, ( e n ) n = 1 ∞ (e_n)_{n=1}^\infty (en)n=1 是X的一个Hilbert基

  • ∀ x ∈ X , x = ∑ n = 1 ∞ ( x , e n ) e n \forall x\in X , x = \sum_{n=1}^\infty (x,e_n)e_n xX,x=n=1(x,en)en ,这被称之为傅里叶级数。
  • n ≥ 1 n\ge 1 n1 ,数 ( x , e n ) ∈ K (x,e_n)\in \mathbb{K} (x,en)K 称之为x 的 傅里叶系数,满足Parseval公式 ∣ ∣ x ∣ ∣ 2 = ∑ n = 1 ∞ ∣ ( x , e n ) ∣ 2 ||x||^2 = \sum_{n=1}^\infty |(x,e_n)|^2 x2=n=1(x,en)2 (啊这,Parseval能量公式?熟悉的信号与系统)
  • ( X , ( ⋅ , ⋅ ) ) (X,(\cdot,\cdot)) (X,(,)) ,为实或复的无限维可分 Hilbert 空间,则存在从X到实或相应复空间 l 2 l^2 l2 上的线性双射 σ \sigma σ ,使得对任何 x , y ∈ X x,y\in X x,yX , ( x , y ) X = ( σ x , σ y ) l 2 (x,y)_X = (\sigma x,\sigma y)_{l^2} (x,y)X=(σx,σy)l2 ,因此借助于保持内积的线性灯具,任何无限维可分Hilbert 空间恒同于空间 l 2 l^2 l2

2.2. 常见的傅里叶级数

2.2.1. 正余弦

a k : = 1 π ∫ 0 2 π g ( ϕ ) cos ⁡ k ϕ d ϕ , k ≥ 0 a_k:=\frac{1}{\pi} \int_{0}^{2\pi} g(\phi) \cos k\phi d\phi,k\ge 0 ak:=π102πg(ϕ)coskϕdϕ,k0
b k : = 1 π ∫ 0 2 π g ( ϕ ) sin ⁡ k ϕ d ϕ , k ≥ 1 b_k:= \frac{1}{\pi} \int_{0}^{2\pi} g(\phi) \sin k\phi d\phi,k\ge 1 bk:=π102πg(ϕ)sinkϕdϕ,k1
( S n g ) ( θ ) : = a 0 2 + ∑ k = 1 n ( a k cos ⁡ k θ + b k sin ⁡ k θ ) , 0 ≤ θ ≤ 2 π (S_ng)(\theta):= \frac{a_0}{2} + \sum_{k=1}^n (a_k\cos k\theta + b_k\sin k\theta),0\le\theta\le 2\pi (Sng)(θ):=2a0+k=1n(akcoskθ+bksinkθ),0θ2π

2.2.2. 复数

c k : 1 2 π ∫ 0 2 π g ( ϕ ) e − i k ϕ d ϕ , k ≥ 0 c_k:\frac{1}{2\pi}\int_0^{2\pi} g(\phi)e^{-ik\phi} d\phi,k\ge 0 ck:2π102πg(ϕ)eikϕdϕ,k0
g n ( θ ) = ∑ k = − n n c k e i k θ , 0 ≤ θ ≤ 2 π g_n(\theta) = \sum_{k=-n}^n c_k e^{ik\theta},0\le \theta\le 2\pi gn(θ)=k=nnckeikθ,0θ2π

这两个理工科应该都贼熟了!!
不多赘述。

3. 自伴算子

( X , ( ⋅ , ⋅ ) ) (X,(\cdot,\cdot)) (X,(,)) K \mathbb{K} K 上的内积空间,如果线性算子 A : X → X A:X\to X A:XX 和它的伴随算子 A ∗ A^* A
相等,即对 ∀ x , y ∈ X , ( A x , y ) = ( x , A y ) \forall x,y\in X,(Ax,y) = (x,Ay) x,yX,(Ax,y)=(x,Ay) 则称A是自伴算子。当 K = R \mathbb{K=R} K=R 时候也称作对称算子,当 K = C \mathbb{K=C} K=C 也称作 Hermite算子。

(啊这很像厄米算符的解释啊)

简而言之,就是一个算子的伴随算子( ( A x , y ) = ( x , A ∗ y ) (Ax,y) = (x,A^*y) (Ax,y)=(x,Ay))还是自身,那它就是一个自伴算子。

正定和非负定: 如果对所有 x ∈ X x\in X xX 均有 ( A x , x ) ≥ 0 (Ax,x) \ge 0 (Ax,x)0 则称A为非负定的,如果对所有的非零的 x ∈ X x\in X xX 均有 ( A x , x ) > 0 (Ax,x) > 0 (Ax,x)>0 ,称A为正定的。 正定A的 K e r    A = { 0 } Ker ~~ A = \{0\} Ker  A={0}

3.1. 自伴算子的性质

如果 ( X , ( ⋅ , ⋅ ) ) (X,(\cdot,\cdot)) (X,(,)) 是内积空间, A : X → X A:X\to X A:XX 是自伴线性算子,有

  • 对任何 x ∈ X x\in X xX ,数 ( A x , x ) (Ax,x) (Ax,x) 是实的
  • λ \lambda λ 为 A 的任意的特征值,则 λ \lambda λ 必是实数,若A是非负定, 则 λ ≥ 0 \lambda \ge 0 λ0 ;若A是正定的,则 λ > 0 \lambda >0 λ>0
  • 对应于不同特征值的特征向量相互正交
  • 如果 A ∈ L ( X ) A\in \mathcal{L}(X) AL(X) ,A的算子范数,即 ∣ ∣ A ∣ ∣ : = s u p x ≠ 0 ∣ ∣ A x ∣ ∣ ∣ ∣ x ∣ ∣ ||A||:= sup _{x\not ={0}} \frac{||Ax||}{||x||} A:=supx=0xAx ,也可由 ∣ ∣ A ∣ ∣ = s u p x ≠ 0 ( A x , x ) ∣ ∣ x ∣ ∣ 2 ||A|| = sup_{x\not ={0}} \frac{(Ax,x)}{||x||^2} A=supx=0x2(Ax,x) 给出

3.2. 紧自伴算子的谱定理

紧线性算子: 线性算子 A : X → Y A:X\to Y A:XY 是线性算子,如果X中任何有界子集在A作用下的像是Y中的相对紧子集,即当B在X中有界时, A ( B ) ← \overleftarrow{A(B)} A(B) 是紧集,A是紧算子。 (最接近有限维空间的线性算子了)
(紧算子把有界子集映射为Y中的相对紧子集)

紧自伴算子自然就是又紧又自伴的线性算子。

无限维值域的紧自伴算子的谱定理: ( X , ( ⋅ , ⋅ ) ) (X,(\cdot,\cdot)) (X,(,)) 为无限维内积空间, A : X → X A:X\to X A:XX 是紧自伴算子,具有无限维的值域,则有

    1. 存在A的特征值的无限序列 ( λ n ) n = 1 ∞ (\lambda_n)_{n=1}^\infty (λn)n=1 和相应的特征向量的无限序列 ( p n ) n = 1 ∞ (p_n)_{n=1}^\infty (pn)n=1 ,满足
    • ∣ λ 1 ∣ = ∣ ∣ A ∣ ∣ , λ 1 ≥ λ 2 ≥ … ≥ ∣ λ n ∣ ≥ … |\lambda_1| = ||A||,\lambda_1\ge \lambda_2\ge\dotsc \ge |\lambda_n| \ge \dotsc λ1=A,λ1λ2λn
    • λ n ≠ 0 , n ≥ 1 ; lim ⁡ n → ∞ λ n = 0 \lambda_n\not ={0},n\ge 1;\lim_{n\to \infty} \lambda_n = 0 λn=0,n1;limnλn=0
    • A p n = λ n p n , n ≥ 1 Ap_n = \lambda_n p_n,n\ge 1 Apn=λnpn,n1
    • ( p k , p l ) = δ k , l , k , l ≥ 1 (p_k,p_l) = \delta_{k,l},k,l\ge 1 (pk,pl)=δk,l,k,l1
    • ∣ λ 1 ∣ = ∣ ( A p 1 , p 1 ) ∣ ∣ ∣ p 1 ∣ ∣ 2 = s u p x ≠ 0 ∣ ( A x , x ) ∣ ∣ ∣ x ∣ ∣ 2 |\lambda_1| = \frac{|(Ap_1,p_1)|}{||p_1||^2} = sup_{x\not ={0}} \frac{|(Ax,x)|}{||x||^2} λ1=p12(Ap1,p1)=supx=0x2(Ax,x)
    • ∣ λ n ∣ = ∣ ( A p n , p n ) ∣ ∣ ∣ p n ∣ ∣ 2 = s u p x ≠ 0 , ( x , p k ) = 0 ,    1 ≤ k ≤ n − 1 ∣ ( A x , x ) ∣ ∣ ∣ x ∣ ∣ 2 , n ≥ 2 |\lambda_n| = \frac{|(Ap_n,p_n)|}{||p_n||^2} = \mathop{sup}\limits_{x\not ={0},(x,p_k) = 0,~~1\le k \le n-1} \frac{|(Ax,x)|}{||x||^2},n\ge 2 λn=pn2(Apn,pn)=x=0,(x,pk)=0,  1kn1supx2(Ax,x),n2
    1. 对任何向量 x ∈ X x\in X xX, A x = ∑ n = 1 ∞ λ n ( x , p n ) p n Ax=\mathop{\sum}\limits_{n=1}^\infty \lambda_n(x,p_n)p_n Ax=n=1λn(x,pn)pn
    1. λ \lambda λ 为 A 的任何非零特征值,则存在 n ≥ 1 n\ge 1 n1 ,使得 λ n = λ \lambda_n = \lambda λn=λ ,而且集合 I ( λ ) : = { n ≥ 1 ; λ n = λ } I(\lambda):=\{n\ge 1;\lambda_n = \lambda \} I(λ):={n1;λn=λ} 是有限集, { p ∈ X ; A p = λ p } = S p a n ( p n ) n ∈ I ( λ ) \{p\in X;Ap=\lambda p\} = Span (p_n)_{n\in I(\lambda)} {pX;Ap=λp}=Span(pn)nI(λ)
    1. A的核空间为 K e r    A = ( S p a n ( p n ) n = 1 ∞ ) ⊥ Ker ~~A = (Span(p_n)_{n=1}^\infty)^\perp Ker  A=(Span(pn)n=1)

啊这,好多啊。
1说明的应该是存在这样一个特征值和特征向量序列,然后这些特征值是按大小排列的,而特征向量则是构成了一族正交基。
2则是经过A得到的Ax可以被分解为特征向量的线性组合,并给出了系数。
3是说不会有无穷多个重复的特征值嘛。
4则是A的核空间由特征值对应的特征向量张成的子空间的直交补。

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙粽子好吃嘛!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值