泛函分析基础9-3-希尔伯特空间1-1:规范正交系【设M是内积空间X的一个不含零的子集,若M中向量两两正交,则称M为X中的“正交系”,又若M中向量的范数都为1,则称M为X中“规范正交系”】

本文介绍了希尔伯特空间中规范正交系的概念,包括定义、性质和应用。通过正交系的基本性质,如正交性和范数为1,展示了其在内积空间中的作用。此外,讨论了正交系与傅里叶系数的关系,以及在级数展开中的重要性。文章还探讨了完全规范正交系和贝塞尔不等式,强调了它们在希尔伯特空间理论中的核心地位。
摘要由CSDN通过智能技术生成

仿照欧氏空间中正交坐标系的概念,我们在内积空间中引入正交系的概念.

定义1

M M M 是 内积空间 X X X 的 一个不含零的子集,若 M M M中向量两两正交,则称 M M M X X X 中 的正交系,又若 M M M 中 向量的范数都为1,则称 M M M X X X规范正交系

例1
R ∗ \mathbf { R } ^ { * } R n n n 维欧氏空间,则向量集

e k = ( δ k 1 , δ k 2 , ⋯   , δ k n ) , k = 1 , 2 , ⋯   , n e _ { k } = \left( \delta _ { k 1 } , \delta _ { k 2 } , \cdots , \delta _ { k n } \right) , k = 1 , 2 , \cdots , n ek=(δk1,δk2,,δkn),k=1,2,,n

R n \mathbf { R } ^ { n } Rn 中规范正交系,其中 δ k j \delta _ { k j } δkj k = j k = j k=j δ k j = 1 ; k ≠ j \delta _ { k j } = 1 ; k \neq j δkj=1;k=j δ k j = 0. \delta _ { k j } = 0 . δkj=0.

例2
在空间 L 2 [ 0 , 2 π ] L ^ { 2 } [ 0 , 2 \pi ] L2[0,2π] 中,定义内积为

⟨ f , g ⟩ = 1 π ∫ 0 2 π f (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值