泛函分析笔记(二十) 二阶边值问题

1. 前置知识

足够光滑的向量场 u , v : Ω → R N u,v:\Omega\to \mathbb{R}^N u,v:ΩRN ,其中

∇ v = ( ∂ i v ) i = 1 N , ∣ ∇ v ∣ : = ( ∑ i = 1 N ∣ ∂ i v ∣ 2 ) 1 2 , ∇ u ⋅ ∇ v = ∑ i = 1 N ∂ i u ∂ i v \nabla v = (\partial_i v)_{i=1}^N,|\nabla v| : = (\mathop{\sum}\limits_{i=1}^N |\partial_i v|^2)^{\frac{1}{2}}, \nabla u \cdot \nabla v = \mathop{\sum}\limits_{i=1}^N\partial_iu\partial_iv v=(iv)i=1N,v:=(i=1Niv2)21,uv=i=1Niuiv

其中 ∣ ⋅ ∣ , ⋅ |\cdot| , \cdot , 分别表示2范数和欧式内积

Ω \Omega Ω R N \mathbb{R}^N RN 中的区域, ν = ( ν i ) i = 1 N \nu = (\nu_i)_{i=1}^N ν=(νi)i=1N 表示沿着 Γ = ∂ Ω \Gamma = \partial \Omega Γ=Ω (就是边界)的单位外法向量场。(很像梯度)

迹: v v v Ω ‾ → R \overline \Omega \to \mathbb{R} ΩR 上的连续函数, Ω \Omega Ω R \mathbb{R} R 的开子集,则在边界 Γ : = ∂ Ω \Gamma :=\partial \Omega Γ:=Ω 上的迹为连续函数 t r   v : Γ → R tr~v:\Gamma\to R tr v:ΓR ,有 ( t r   v ) ( x ) = v ( x ) , x ∈ Γ (tr~v)(x) = v(x),x\in \Gamma (tr v)(x)=v(x),xΓ

所以讲一个函数的迹就是限制在边界上的映射。

1.1. 格林公式

  1. 对任意 u ∈ H 2 ( Ω ) u\in H^2(\Omega) uH2(Ω) ,令

Δ u = ∑ i = 1 N ∂ i i u ∈ L 2 ( Ω ) \Delta u = \mathop{\sum}\limits_{i=1}^N \partial_{ii}u\in L^2(\Omega) Δu=i=1NiiuL2(Ω)

(看上去这好像就是个散度?)

∂ ν u = ∑ i = 1 N ν i ∂ i u ∈ L 2 ( Γ ) \partial_\nu u = \mathop{\sum}\limits_{i=1}^N\nu_i\partial_i u\in L^2(\Gamma) νu=i=1NνiiuL2(Γ)

(用单位法向量和函数的迹做欧式内积吗,得到迹在法向量方向的投影)

其中 ∂ i u ∈ L 2 ( Γ ) \partial_i u\in L^2(\Gamma) iuL2(Γ) 表示函数 ∂ i u ∈ H 1 ( Ω ) \partial_i u\in H^1(\Omega) iuH1(Ω) Γ \Gamma Γ 上的迹。

此时下Green公式成立:

∫ Ω ∇ u ⋅ ∇ v d x = − ∫ Ω ( Δ u ) v d x + ∫ Γ ( ∂ ν u ) v d Γ \int_\Omega \nabla u \cdot \nabla v dx = - \int_\Omega (\Delta u)vdx + \int_\Gamma (\partial_\nu u) vd\Gamma Ωuvdx=Ω(Δu)vdx+Γ(νu)vdΓ

  1. 给定函数 a ∈ C 2 ( Ω ‾ ) a\in \mathcal{C}^2(\overline{\Omega}) aC2(Ω) 以及 u ∈ H 1 ( Ω ) u\in H^1(\Omega) uH1(Ω) ,则函数 a u au au 属于空间 H 1 ( Ω ) H^1(\Omega) H1(Ω) ,且下格林公式成立

∫ Ω a u ∂ j v d x = − ∫ Ω ( ∂ j ( a u ) ) v d x + ∫ Γ a u v ν j d Γ \int_\Omega au\partial_j vdx = -\int_\Omega(\partial_j(au))vdx + \int_\Gamma auv\nu_j d\Gamma Ωaujvdx=Ω(j(au))vdx+ΓauvνjdΓ

1.2. 算子

Δ = ∑ i = 1 N ∂ i i \Delta = \mathop{\sum}\limits_{i=1}^N \partial_{ii} Δ=i=1Nii 作用在定义于 Ω \Omega Ω 内的函数上,称为Laplace算子

Δ u \Delta u Δu 称为 u 的 Laplace 算符。

∂ ν = ∑ i = 1 N ν i ∂ i \partial_\nu = \mathop{\sum}\limits_{i=1}^N\nu_i \partial_i ν=i=1Nνii 作用于定义在边界 Γ \Gamma Γ 上的函数上,称为外法向微分算子, ∂ ν u \partial_\nu u νu 称为 u u u 的外法向导数。

2. 边值问题

给定 f ∈ L 2 ( Ω ) f\in L^2(\Omega) fL2(Ω) ,令
V = H 0 1 ( Ω ) V = H_0^1(\Omega) V=H01(Ω)

a ( u , v ) = ∫ Ω ( ∇ u ⋅ ∇ v + c u v ) d x , u , v ∈ V a(u,v) = \int_\Omega(\nabla u\cdot\nabla v + cuv)dx, u,v\in V a(u,v)=Ω(uv+cuv)dx,u,vV

l ( v ) = ∫ Ω f v d x , v ∈ V l(v)=\int_\Omega fvdx,v\in V l(v)=Ωfvdx,vV

则有唯一的函数 u ∈ H 0 1 ( Ω ) u\in H_0^1(\Omega) uH01(Ω) 使以下泛函极小化

J ( v ) : = 1 2 a ( v , v ) − l ( v ) = 1 2 ∫ Ω ( ∣ ∇ v ∣ 2 + c v 2 ) d x − ∫ Ω f v d x ,   v ∈ H 0 1 ( Ω ) J(v):=\frac{1}{2}a(v,v)-l(v) =\frac{1}{2}\int_\Omega (|\nabla v|^2 + cv^2)dx - \int_\Omega fvdx,~ v\in H_0^1(\Omega) J(v):=21a(v,v)l(v)=21Ω(v2+cv2)dxΩfvdx, vH01(Ω)

即满足变分方程 a ( u , v ) = l ( v ) , v ∈ H 0 1 ( Ω ) a(u,v) = l(v),v\in H_0^1(\Omega) a(u,v)=l(v),vH01(Ω)

一个 f f f 对应一个 u u u 嘛,所以可以定义线性映射来表示这种关系

f ∈ L 2 ( Ω ) → u ∈ H 0 1 ( Ω ) f\in L^2(\Omega) \to u \in H_0^1(\Omega) fL2(Ω)uH01(Ω)

这个映射是连续的,而且函数 u u u 满足边值问题:

− Δ u + c u = f -\Delta u +cu = f Δu+cu=f Ω \Omega Ω 上,且 u = 0 u=0 u=0 Γ \Gamma Γ

别的就不证明了,最后这个边值问题来自于变分方程。

∫ Ω ( ∇ u ⋅ ∇ v + c u v ) d x = ∫ Ω f v d x \int_\Omega(\nabla u\cdot\nabla v + cuv)dx = \int_\Omega fvdx Ω(uv+cuv)dx=Ωfvdx

即为

∫ Ω [ ( ∇ u ⋅ ∇ v + c u v ) − f v ] d x = 0 \int_\Omega[(\nabla u\cdot\nabla v + cuv) - fv]dx = 0 Ω[(uv+cuv)fv]dx=0

可得

− Δ u + c u − f = 0 -\Delta u + cu -f =0 Δu+cuf=0

(边界条件 u=0,第一项用格林公式替换)
是其次的

更一般的有

− Δ u + c u = f 在 Ω 中 , u = u 0 在 Γ 上 -\Delta u + cu = f 在 \Omega 中, u=u_0 在 \Gamma 上 Δu+cu=fΩ,u=u0Γ

称为偏微分算子 L : v → L v = − Δ v + c v \mathcal{L}:v\to \mathcal{L}v = -\Delta v + cv L:vLv=Δv+cv 的 Dirichlet问题。
(这是非齐次的)

特殊情况:

Possion方程: − Δ u = f -\Delta u = f Δu=f

Laplace方程: − Δ u = 0 -\Delta u = 0 Δu=0

(Laplace 方程的解是调和函数)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙粽子好吃嘛!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值