泛函分析笔记(二十一) 障碍问题

1. 薄膜问题

薄膜问题是由泛函 J : H 0 1 ( Ω ) → R J:H_0^1(\Omega)\to \mathbb{R} J:H01(Ω)R

J ( v ) : = 1 2 ∫ Ω ∣ ∇ u ∣ 2 d x − ∫ Ω f v d x , ∀ v ∈ H 0 1 ( Ω ) J(v):=\frac{1}{2}\int_\Omega |\nabla u|^2 dx - \int_\Omega fvdx,\forall v\in H_0^1(\Omega) J(v):=21Ωu2dxΩfvdx,vH01(Ω)

表示弹性薄膜的能量,薄膜通过水平面 R 2 \mathbb{R^2} R2 上一区域 Ω \Omega Ω 的边界并且受到密度 F = τ f F=\tau f F=τf 的垂直力的作用,求其平衡位置。

障碍问题仍然是求其平衡位置,但增加了假设: 薄膜位于由函数 χ : Ω ‾ → R 2 \chi:\overline{\Omega} \to \mathbb{R}^2 χ:ΩR2 表示的障碍之上。(假定边界上这个障碍是小于0 的,免得影响边界)。

2. 极小化问题的存在性

Ω \Omega Ω R 2 \mathbb{R}^2 R2 中的区域,函数
χ ∈ H 1 ( Ω ) ∩ C ( Ω ‾ ) , χ ∣ Γ ≤ 0 , f ∈ L 2 ( Ω ) \chi\in H^1(\Omega)\cap \mathcal{C}(\overline\Omega),\chi|_\Gamma \le 0 ,f\in L^2(\Omega) χH1(Ω)C(Ω),χΓ0,fL2(Ω)
是给定的。
又有

V : = H 0 1 ( Ω ) , U : = { v ∈ H 0 1 ( Ω ) ; v ≥ χ 几 乎 处 处 在 Ω 内 } V:=H_0^1(\Omega) ,U:=\{v\in H_0^1(\Omega);v\ge \chi 几乎处处在 \Omega 内\} V:=H01(Ω),U:={vH01(Ω);vχΩ}
a ( u , v ) = ∫ Ω ∇ u ⋅ ∇ v d x , ∀ u , v ∈ V a(u,v) = \int_\Omega \nabla u\cdot \nabla v dx,\forall u,v\in V a(u,v)=Ωuvdx,u,vV
l ( v ) = ∫ Ω f v d x , ∀ v ∈ V l(v) = \int_\Omega fvdx ,\forall v\in V l(v)=Ωfvdx,vV

则存在唯一的函数 v ∈ U v\in U vU 在集合 U U U 上的极小化由下式定义的泛函 J : V → R J:V\to\mathbb{R} J:VR

J ( v ) : = 1 2 ∫ Ω ∣ ∇ u ∣ 2 d x − ∫ Ω f v d x , ∀ v ∈ H 0 1 ( Ω ) J(v):=\frac{1}{2}\int_\Omega |\nabla u|^2 dx - \int_\Omega fvdx,\forall v\in H_0^1(\Omega) J(v):=21Ωu2dxΩfvdx,vH01(Ω)

或等价满足变分不等式

∫ Ω ∇ u ⋅ ∇ ( v − u ) d x ≥ ∫ Ω f ( v − u ) d x , ∀ v ∈ U \int_\Omega \nabla u \cdot \nabla(v-u)dx\ge \int_\Omega f(v-u)dx,\forall v\in U Ωu(vu)dxΩf(vu)dx,vU

以此种方式定义的映射 f ∈ L 2 ( Ω ) → u ∈ U ⊂ H 0 1 ( Ω ) f\in L^2(\Omega)\to u\in U \subset H_0^1(\Omega) fL2(Ω)uUH01(Ω) 是非线性Lipschitz连续的。如果进一步假定 u ∈ H 2 ( Ω ) u\in H^2(\Omega) uH2(Ω) 则u满足

  • − Δ u = f , 在 Ω + = { y ∈ Ω ; u ( y ) > χ ( y ) } 内 -\Delta u = f,在 \Omega^+ = \{y\in \Omega;u(y) > \chi(y)\} 内 Δu=f,Ω+={yΩ;u(y)>χ(y)}
  • − Δ u ≥ f , 在 Ω 0 = { y ∈ Ω ; u ( y ) = χ ( y ) } = Ω − Ω + 内 -\Delta u \ge f,在 \Omega^0 = \{y\in \Omega;u(y) = \chi (y)\} = \Omega - \Omega^+ 内 Δuf,Ω0={yΩ;u(y)=χ(y)}=ΩΩ+
  • u ≥ χ , 在 Ω ‾ 内 u\ge \chi ,在 \overline\Omega 内 uχ,Ω
  • u = 0 , 在 Γ 上 u = 0,在 \Gamma 上 u=0,Γ

和之前的二阶薄膜问题相比,变分方程变成了变分不等式。


对一个给定的函数 v ∈ H 1 ( Ω ) v\in H^1(\Omega) vH1(Ω) ,函数 m a x { 0 , v } max\{0,v\} max{0,v} 属于空间 H 0 1 ( Ω ) H^1_0(\Omega) H01(Ω) 。空间 U U U 是非空的,因为其包括 m a x { 0 , v } max\{0,v\} max{0,v} ,是 的,因为 λ v + ( 1 − λ ) ω ≤ λ χ ( 1 − λ ) χ = χ , ∀ v , ω ∈ U , 0 < λ < 1 \lambda v + (1-\lambda)\omega \le \lambda \chi (1-\lambda)\chi = \chi,\forall v,\omega \in U,0< \lambda < 1 λv+(1λ)ωλχ(1λ)χ=χ,v,ωU,0<λ<1;是 的,因为若设函数 v k ∈ U , k ≥ 1 v_k\in U,k\ge 1 vkU,k1 使得 lim ⁡ k → ∞ ∣ ∣ v k − v ∣ ∣ 1 , Ω → 0 \lim _{k\to \infty }||v_k-v||_{1,\Omega}\to 0 limkvkv1,Ω0 , 有 lim ⁡ k → ∞ ∣ ∣ v k − v ∣ ∣ 0 , Ω → 0 \lim_{k\to\infty}||v_k-v||_{0,\Omega}\to 0 limkvkv0,Ω0

因此存在一个子列 ( v σ ( k ) ) k = 1 ∞ (v_{\sigma(k)})_{k=1}^\infty (vσ(k))k=1 Ω \Omega Ω 内几乎处处点点收敛于 v v v ,有

v ( x ) = lim ⁡ k → ∞ v σ ( k ) ( x ) ≥ χ ( x ) , ∀ x ∈ Ω v(x) = \lim_{k\to\infty} v_{\sigma(k)} (x) \ge \chi(x),\forall x \in \Omega v(x)=limkvσ(k)(x)χ(x),xΩ

因此存在唯一的函数 u ∈ U u\in U uU 满足泛函 J J J 的极小化或是变分不等式。


给定任意点 x ∈ Ω + x\in \Omega^+ xΩ+ ,令 2 δ = u ( x ) − χ ( x ) > 0 2\delta = u(x)-\chi(x) > 0 2δ=u(x)χ(x)>0 ,因 x ∈ Ω x\in \Omega xΩ Ω \Omega Ω 是开的,又因函数 ( u − χ ) : Ω → R (u-\chi):\Omega \to \mathbb{ R} (uχ):ΩR 是连续的,存在 r > 0 r>0 r>0 使得

B ( x ; r ) ⊂ Ω , u ( y ) − χ ( y ) ≥ δ , ∀ y ∈ B ( x ; r ) B(x;r)\subset \Omega ,u(y) - \chi(y)\ge \delta,\forall y \in B(x;r) B(x;r)Ω,u(y)χ(y)δ,yB(x;r)

所以 B ( x , r ) ⊂ Ω + B(x,r) \subset \Omega^+ B(x,r)Ω+ 是开的

给定任意非零函数 ϕ ∈ D ( Ω ) \phi \in \mathcal{ D}(\Omega) ϕD(Ω) 使得 s u p p   ϕ ⊂ B ( x ; r ) supp ~\phi\subset B(x;r) supp ϕB(x;r) ,令

α 0 = α 0 ( ϕ ) = δ s u p y ∈ B ( x ; r ) ∣ ϕ ( y ) ∣ > 0 \alpha_0 = \alpha_0(\phi) = \frac{\delta}{sup_{y\in B(x;r)}|\phi(y)|}>0 α0=α0(ϕ)=supyB(x;r)ϕ(y)δ>0

此时函数 v α = u + α ϕ v_\alpha = u + \alpha \phi vα=u+αϕ 属于集合 U ,对所有的 ∣ α ∣ ≤ α 0 |\alpha| \le \alpha_0 αα0

由格林公式和在 Γ \Gamma Γ v − u = 0 v-u = 0 vu=0 ,变分不等式化为

∫ Ω ∇ u ⋅ ∇ ( v − u ) d x = − ∫ Ω Δ u ( v − u ) d x ≥ ∫ Ω f ( v − d ) d x , ∀ v ∈ U \int_{\Omega}\nabla u\cdot \nabla (v-u)dx = -\int_\Omega \Delta u (v-u)dx \ge \int_\Omega f(v-d)dx,\forall v\in U Ωu(vu)dx=ΩΔu(vu)dxΩf(vd)dx,vU

v = v α v = v_\alpha v=vα 得到

α ∫ B ( x ; r ) ( − Δ u − f ) ϕ d x ≥ 0 , ∀ ϕ ∈ D ( B ( x ; r ) ) , ∣ α ∣ ≤ α 0 \alpha \int_{B(x;r)} (-\Delta u - f)\phi dx \ge 0, \forall \phi\in\mathcal{D}(B(x;r)),|\alpha|\le \alpha_0 αB(x;r)(Δuf)ϕdx0ϕD(B(x;r)),αα0

这意味着 ∫ B ( x ; r ) ( − Δ u − f ) ϕ d x = 0 \int_{B(x;r)}(-\Delta u - f)\phi dx = 0 B(x;r)(Δuf)ϕdx=0 对所有的 ϕ ∈ D ( B ( x ; r ) ) \phi \in \mathcal{D}(B(x;r)) ϕD(B(x;r)) 成立,所以 − Δ u = f -\Delta u = f Δu=f L 2 ( B ( x ; r ) ) L^2(B(x;r)) L2(B(x;r)) 中成立,在 L 2 ( Ω + ) L^2(\Omega^+) L2(Ω+) 中成立。


如果还有 u ∈ H 2 ( Ω ) u\in H^2(\Omega) uH2(Ω) ,则 − Δ u − f ≥ 0 -\Delta u - f \ge 0 Δuf0 几乎处处在 Ω 0 = { y ∈ Ω ; u ( y ) = χ ( t ) } \Omega^0 = \{y\in \Omega ;u(y) = \chi(t)\} Ω0={yΩ;u(y)=χ(t)} 中成立。
给定任意函数 ϕ ∈ D ( Ω ) \phi\in\mathcal{D}(\Omega) ϕD(Ω) ,其满足 ϕ ≥ 0 \phi \ge 0 ϕ0 Ω \Omega Ω 内,则函数 v : = u + ϕ v:=u+\phi v:=u+ϕ 属于U,因此,对这样的函数 v,变分方程和Green公式有

∫ Ω ( − Δ u − f ) ( v − u ) d x = ∫ Ω ( − Δ u − f ) ϕ d x ≥ 0 , ∀ ϕ ∈ D ( Ω ) , 且 ϕ ≥ 0 在 Ω 内 \int_\Omega(-\Delta u - f )(v-u)dx = \int_\Omega (-\Delta u - f)\phi dx \ge 0,\forall \phi \in \mathcal{D}(\Omega),且\phi\ge 0 在 \Omega 内 Ω(Δuf)(vu)dx=Ω(Δuf)ϕdx0,ϕD(Ω),ϕ0Ω


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙粽子好吃嘛!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值